IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6977-d579110.html
   My bibliography  Save this article

Energy-Investment Decision-Making for Industry: Quantitative and Qualitative Risks Integrated Analysis

Author

Listed:
  • Eva M. Urbano

    (MCIA Research Center, Department of Electronic Engineering, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain)

  • Victor Martinez-Viol

    (MCIA Research Center, Department of Electronic Engineering, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain)

  • Konstantinos Kampouropoulos

    (MCIA Research Center, Department of Electronic Engineering, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain)

  • Luis Romeral

    (MCIA Research Center, Department of Electronic Engineering, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain)

Abstract

Industrial SMEs may take the decision to invest in energy efficient equipment to reduce energy costs by replacing or upgrading their obsolete equipment or due to external socio-political and legislative pressures. When upgrading their energy equipment, it may be beneficial to consider the adoption of new energy strategies rising from the ongoing energy transition to support green transformation and decarbonisation. To face this energy-investment decision-making problem, a set of different economic and environmental criteria have to be evaluated together with their associated risks. Although energy-investment problems have been treated in the literature, the incorporation of both quantitative and qualitative risks for decision-making in SMEs has not been studied yet. In this paper, this research gap is addressed, creating a framework that considers non-risk criteria and quantitative and qualitative risks into energy-investment decision-making problems. Both types of risks are evaluated according to their probability and impact on the company’s objectives and, additionally for qualitative risks, a fuzzy inference system is employed to account for judgmental subjectivity. All the criteria are incorporated into a single cost–benefit analysis function, which is optimised along the energy assets’ lifetime to reach the best long-term energy investment decisions. The proposed methodology is applied to a specific industrial SME as a case study, showing the benefits of considering these risks in the decision-making problem. Nonetheless, the methodology is expandable with minor changes to other entities facing the challenge to invest in energy equipment or, as well, other tangible assets.

Suggested Citation

  • Eva M. Urbano & Victor Martinez-Viol & Konstantinos Kampouropoulos & Luis Romeral, 2021. "Energy-Investment Decision-Making for Industry: Quantitative and Qualitative Risks Integrated Analysis," Sustainability, MDPI, vol. 13(12), pages 1-30, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6977-:d:579110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6977/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6977/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sali, Mustapha & Sahin, Evren, 2016. "Line feeding optimization for Just in Time assembly lines: An application to the automotive industry," International Journal of Production Economics, Elsevier, vol. 174(C), pages 54-67.
    2. Lamedica, Regina & Santini, Ezio & Ruvio, Alessandro & Palagi, Laura & Rossetta, Irene, 2018. "A MILP methodology to optimize sizing of PV - Wind renewable energy systems," Energy, Elsevier, vol. 165(PB), pages 385-398.
    3. Firtina-Ertis, Irem & Acar, Canan & Erturk, Ercan, 2020. "Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house," Applied Energy, Elsevier, vol. 274(C).
    4. Alaali, Fatema, 2020. "The effect of oil and stock price volatility on firm level investment: The case of UK firms," Energy Economics, Elsevier, vol. 87(C).
    5. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    6. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    7. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    8. Ersdal, Gerhard & Aven, Terje, 2008. "Risk informed decision-making and its ethical basis," Reliability Engineering and System Safety, Elsevier, vol. 93(2), pages 197-205.
    9. F. Brocal & C. González & D. Komljenovic & P. F. Katina & Miguel A. Sebastián, 2019. "Emerging Risk Management in Industry 4.0: An Approach to Improve Organizational and Human Performance in the Complex Systems," Complexity, Hindawi, vol. 2019, pages 1-13, June.
    10. Bohlayer, Markus & Bürger, Adrian & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2021. "Multi-period investment pathways - Modeling approaches to design distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 285(C).
    11. Sanajaoba Singh, Sarangthem & Fernandez, Eugene, 2018. "Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system," Energy, Elsevier, vol. 143(C), pages 719-731.
    12. Inês, Campos & Guilherme, Pontes Luz & Esther, Marín-González & Swantje, Gährs & Stephen, Hall & Lars, Holstenkamp, 2020. "Regulatory challenges and opportunities for collective renewable energy prosumers in the EU," Energy Policy, Elsevier, vol. 138(C).
    13. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    14. Mustapha Sali & Evren Sahin, 2016. "Line feeding optimization for Just in Time assembly lines: an application to the automotive industry," Post-Print hal-01265041, HAL.
    15. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Rocco, Vittorio & Rossi, Joao Luis, 2018. "Hybrid renewable energy systems for renewable integration in microgrids: Influence of sizing on performance," Energy, Elsevier, vol. 152(C), pages 744-758.
    16. Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morgan Westbrook & William Rasdorf, 2023. "LED Traffic Signal Repair and Replacement Practices," Sustainability, MDPI, vol. 15(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    2. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
    3. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    4. Schmid, Nico André & Limère, Veronique & Raa, Birger, 2021. "Mixed model assembly line feeding with discrete location assignments and variable station space," Omega, Elsevier, vol. 102(C).
    5. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    6. Emilio Moretti & Elena Tappia & Veronique Limère & Marco Melacini, 2021. "Exploring the application of machine learning to the assembly line feeding problem," Operations Management Research, Springer, vol. 14(3), pages 403-419, December.
    7. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.
    8. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    9. Baller, Reinhard & Hage, Steffen & Fontaine, Pirmin & Spinler, Stefan, 2020. "The assembly line feeding problem: An extended formulation with multiple line feeding policies and a case study," International Journal of Production Economics, Elsevier, vol. 222(C).
    10. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2023. "A framework for quantifying the value of information to mitigate risk in the optimal design of distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 350(C).
    11. Le, Tay Son & Nguyen, Tuan Ngoc & Bui, Dac-Khuong & Ngo, Tuan Duc, 2023. "Optimal sizing of renewable energy storage: A techno-economic analysis of hydrogen, battery and hybrid systems considering degradation and seasonal storage," Applied Energy, Elsevier, vol. 336(C).
    12. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    13. Guo, Jiacheng & Liu, Zhijian & Wu, Xuan & Wu, Di & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Two-layer co-optimization method for a distributed energy system combining multiple energy storages," Applied Energy, Elsevier, vol. 322(C).
    14. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    15. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    16. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    17. Petkov, Ivalin & Gabrielli, Paolo & Spokaite, Marija, 2021. "The impact of urban district composition on storage technology reliance: trade-offs between thermal storage, batteries, and power-to-hydrogen," Energy, Elsevier, vol. 224(C).
    18. Mokhtara, Charafeddine & Negrou, Belkhir & Settou, Noureddine & Settou, Belkhir & Samy, Mohamed Mahmoud, 2021. "Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria," Energy, Elsevier, vol. 219(C).
    19. Mohammed Hichame Benbitour & Evren Sahin, 2018. "The use of internal cross-docking in just-in-time plants," Post-Print hal-01793491, HAL.
    20. Bartolucci, L. & Cordiner, S. & Mulone, V. & Pasquale, S. & Sbarra, A., 2022. "Design and management strategies for low emission building-scale Multi Energy Systems," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6977-:d:579110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.