IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v322y2022ics0306261922008121.html
   My bibliography  Save this article

Two-layer co-optimization method for a distributed energy system combining multiple energy storages

Author

Listed:
  • Guo, Jiacheng
  • Liu, Zhijian
  • Wu, Xuan
  • Wu, Di
  • Zhang, Shicong
  • Yang, Xinyan
  • Ge, Hua
  • Zhang, Peiwen

Abstract

With the rapid development of nearly zero-energy buildings, the establishment of a nearly zero-energy community composed of concentrated and contiguous nearly zero-energy buildings constitutes the future architectural trend. However, configuration and optimization research of distributed energy systems combining multiple energy storages (DES-MESs) for the nearly zero-energy community is not sufficiently mature. Therefore, this paper initially proposed a DES-MES combining power-to-heat, power-to-cold and lithium batteries. Subsequently, a two-layer co-optimization method was proposed considering the equipment configuration in the upper layer and energy storage operating parameters in the under-layer. Based on the nearly zero-energy community, the influence of the initial parameters on the DES-MES optimization results was studied. Then, comparative research of different co-optimization methods was conducted. Finally, analysed the interactive electricity quantity, annual cost, carbon dioxide emissions, etc., of the DES-MES under the nearly zero-energy community scenario. The results indicated that the stability of the performance indicators (volatility under 5.0%) and decision variables (volatility under 30.0%) of the system were much higher than those determined with multi-parameter or multi-stage co-optimization methods. Compared to the separated production system, the primary energy consumption and carbon dioxide emissions of the DES-MES were reduced by 4.7 × 106 kWh (72.3%) and 1.6 × 106 kg (79.0%), respectively. The two-layer co-optimization method could effectively solve the problem of balancing the accuracy of the optimization results and calculation time. This paper provides a solution for the study of the system structure, operation optimization, and performance indicators of the DES-MES under the nearly zero-energy community scenario.

Suggested Citation

  • Guo, Jiacheng & Liu, Zhijian & Wu, Xuan & Wu, Di & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Two-layer co-optimization method for a distributed energy system combining multiple energy storages," Applied Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008121
    DOI: 10.1016/j.apenergy.2022.119486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    2. Wu, Dan & Aye, Lu & Ngo, Tuan & Mendis, Priyan, 2017. "Optimisation and financial analysis of an organic Rankine cycle cooling system driven by facade integrated solar collectors," Applied Energy, Elsevier, vol. 185(P1), pages 172-182.
    3. Wu, Di & Han, Zhonghe & Liu, Zhijian & Li, Peng & Ma, Fanfan & Zhang, Han & Yin, Yunxing & Yang, Xinyan, 2021. "Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system," Energy, Elsevier, vol. 217(C).
    4. Barthwal, Mohit & Dhar, Atul & Powar, Satvasheel, 2021. "The techno-economic and environmental analysis of genetic algorithm (GA) optimized cold thermal energy storage (CTES) for air-conditioning applications," Applied Energy, Elsevier, vol. 283(C).
    5. Wang, Jiangjiang & Chen, Yuzhu & Dou, Chao & Gao, Yuefen & Zhao, Zheng, 2018. "Adjustable performance analysis of combined cooling heating and power system integrated with ground source heat pump," Energy, Elsevier, vol. 163(C), pages 475-489.
    6. Mahbub, Md Shahriar & Cozzini, Marco & Østergaard, Poul Alberg & Alberti, Fabrizio, 2016. "Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design," Applied Energy, Elsevier, vol. 164(C), pages 140-151.
    7. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Amr, Ayman Abdel-raheim & Hassan, A.A.M. & Abdel-Salam, Mazen & El-Sayed, AbouHashema M., 2019. "Enhancement of photovoltaic system performance via passive cooling: Theory versus experiment," Renewable Energy, Elsevier, vol. 140(C), pages 88-103.
    9. Ghilardi, Lavinia Marina Paola & Castelli, Alessandro Francesco & Moretti, Luca & Morini, Mirko & Martelli, Emanuele, 2021. "Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings," Applied Energy, Elsevier, vol. 302(C).
    10. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    11. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    12. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    13. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    14. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    15. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    17. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    18. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    19. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    20. Alao, Moshood Akanni & Popoola, Olawale M. & Ayodele, Temitope Rapheal, 2021. "Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa," Renewable Energy, Elsevier, vol. 178(C), pages 162-183.
    21. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Effect of air gap on a novel hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system," Applied Energy, Elsevier, vol. 293(C).
    22. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    23. Heidari, A. & Mortazavi, S.S. & Bansal, R.C., 2020. "Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies," Applied Energy, Elsevier, vol. 261(C).
    24. Li, Nan & Zhao, Xunwen & Shi, Xunpeng & Pei, Zhenwei & Mu, Hailin & Taghizadeh-Hesary, Farhad, 2021. "Integrated energy systems with CCHP and hydrogen supply: A new outlet for curtailed wind power," Applied Energy, Elsevier, vol. 303(C).
    25. Yan, Junchen & Broesicke, Osvaldo A. & Tong, Xin & Wang, Dong & Li, Duo & Crittenden, John C., 2021. "Multidisciplinary design optimization of distributed energy generation systems: The trade-offs between life cycle environmental and economic impacts," Applied Energy, Elsevier, vol. 284(C).
    26. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    27. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2019. "Techno-economic analysis of hybrid renewable energy system with solar district heating for net zero energy community," Energy, Elsevier, vol. 187(C).
    28. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    29. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    30. Yang, Wenjun & Guo, Jia & Vartosh, Aris, 2022. "Optimal economic-emission planning of multi-energy systems integrated electric vehicles with modified group search optimization," Applied Energy, Elsevier, vol. 311(C).
    31. Wang, Xuan & Jin, Ming & Feng, Wei & Shu, Gequn & Tian, Hua & Liang, Youcai, 2018. "Cascade energy optimization for waste heat recovery in distributed energy systems," Applied Energy, Elsevier, vol. 230(C), pages 679-695.
    32. Zheng, Bingle & Wu, Xiao, 2022. "Integrated capacity configuration and control optimization of off-grid multiple energy system for transient performance improvement," Applied Energy, Elsevier, vol. 311(C).
    33. E, Jiaqiang & Zhang, Bin & Zeng, Yan & Wen, Ming & Wei, Kexiang & Huang, Zhonghua & Chen, Jingwei & Zhu, Hao & Deng, Yuanwang, 2022. "Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge," Energy, Elsevier, vol. 238(PB).
    34. Li, Dongsen & Gao, Ciwei & Chen, Tao & Guo, Xiaoxuan & Han, Shuai, 2021. "Planning strategies of power-to-gas based on cooperative game and symbiosis cooperation," Applied Energy, Elsevier, vol. 288(C).
    35. Yang, Xinyan & Zhang, Shicong & Xu, Wei, 2019. "Impact of zero energy buildings on medium-to-long term building energy consumption in China," Energy Policy, Elsevier, vol. 129(C), pages 574-586.
    36. Iijima, Fuyumi & Ikeda, Shintaro & Nagai, Tatsuo, 2022. "Automated computational design method for energy systems in buildings using capacity and operation optimization," Applied Energy, Elsevier, vol. 306(PA).
    37. Prina, Matteo Giacomo & Casalicchio, Valeria & Kaldemeyer, Cord & Manzolini, Giampaolo & Moser, David & Wanitschke, Alexander & Sparber, Wolfram, 2020. "Multi-objective investment optimization for energy system models in high temporal and spatial resolution," Applied Energy, Elsevier, vol. 264(C).
    38. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    39. Heine, Karl & Tabares-Velasco, Paulo Cesar & Deru, Michael, 2021. "Design and dispatch optimization of packaged ice storage systems within a connected community," Applied Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
    2. Wang, Zhaojun & Zhang, Zhonghui & Zhang, Zhonglian & Lei, Dayong & Li, Moxuan & Zhang, Liuyu, 2023. "Two-layer optimization of integrated energy system with considering ambient temperature effect and variable operation scheme," Energy, Elsevier, vol. 278(C).
    3. Li, Ye & Liu, Zihan & Sang, Yufeng & Hu, Jingfan & Li, Bojia & Zhang, Xinyu & Jurasz, Jakub & Zheng, Wandong, 2023. "Optimization of integrated energy system for low-carbon community considering the feasibility and application limitation," Applied Energy, Elsevier, vol. 348(C).
    4. Gang Liang & Bing Sun & Yuan Zeng & Leijiao Ge & Yunfei Li & Yu Wang, 2022. "An Optimal Allocation Method of Distributed PV and Energy Storage Considering Moderate Curtailment Measure," Energies, MDPI, vol. 15(20), pages 1-19, October.
    5. Baohong Jin & Zhichao Liu & Yichuan Liao, 2023. "Exploring the Impact of Regional Integrated Energy Systems Performance by Energy Storage Devices Based on a Bi-Level Dynamic Optimization Model," Energies, MDPI, vol. 16(6), pages 1-21, March.
    6. Huang, Chang & Yan, Yixian & Madonski, Rafal & Zhang, Qi & Deng, Hui, 2023. "Improving operation strategies for solar-based distributed energy systems: Matching system design with operation," Energy, Elsevier, vol. 276(C).
    7. Ye Li & Shixuan Li & Shiyao Xia & Bojia Li & Xinyu Zhang & Boyuan Wang & Tianzhen Ye & Wandong Zheng, 2023. "A Review on the Policy, Technology and Evaluation Method of Low-Carbon Buildings and Communities," Energies, MDPI, vol. 16(4), pages 1-43, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Guangyao & Liu, Zhijian & Liu, Xuan & Shi, Yaxin & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Zhang, Yulong, 2022. "Two-layer collaborative optimization for a renewable energy system combining electricity storage, hydrogen storage, and heat storage," Energy, Elsevier, vol. 259(C).
    2. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    3. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    4. Guo, Jiacheng & Liu, Zhijian & Li, Ying & Wu, Di & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage," Renewable Energy, Elsevier, vol. 182(C), pages 1182-1200.
    5. Guo, Jiacheng & Zhang, Peiwen & Wu, Di & Liu, Zhijian & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua, 2022. "Multi-objective optimization design and multi-attribute decision-making method of a distributed energy system based on nearly zero-energy community load forecasting," Energy, Elsevier, vol. 239(PC).
    6. Brodnicke, Linda & Gabrielli, Paolo & Sansavini, Giovanni, 2023. "Impact of policies on residential multi-energy systems for consumers and prosumers," Applied Energy, Elsevier, vol. 344(C).
    7. Yi Yan & Xuerui Wang & Ke Li & Xiaopeng Kang & Weizheng Kong & Hongcai Dai, 2022. "Tri-Level Integrated Optimization Design Method of a CCHP Microgrid with Composite Energy Storage," Sustainability, MDPI, vol. 14(9), pages 1-29, April.
    8. Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.
    9. Wang, Jiangjiang & Liu, Yi & Ren, Fukang & Lu, Shuaikang, 2020. "Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility," Energy, Elsevier, vol. 197(C).
    10. Yuwei Wang & Yuanjuan Yang & Liu Tang & Wei Sun & Huiru Zhao, 2019. "A Stochastic-CVaR Optimization Model for CCHP Micro-Grid Operation with Consideration of Electricity Market, Wind Power Accommodation and Multiple Demand Response Programs," Energies, MDPI, vol. 12(20), pages 1-33, October.
    11. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    12. Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
    13. Petkov, Ivalin & Mavromatidis, Georgios & Knoeri, Christof & Allan, James & Hoffmann, Volker H., 2022. "MANGOret: An optimization framework for the long-term investment planning of building multi-energy system and envelope retrofits," Applied Energy, Elsevier, vol. 314(C).
    14. Zhang, Lizhi & Kuang, Jiyuan & Sun, Bo & Li, Fan & Zhang, Chenghui, 2020. "A two-stage operation optimization method of integrated energy systems with demand response and energy storage," Energy, Elsevier, vol. 208(C).
    15. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Ma, Xin, 2021. "Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage," Energy, Elsevier, vol. 221(C).
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Zhang, Shicong & Xu, Wei & Wang, Ke & Feng, Wei & Athienitis, Andreas & Hua, Ge & Okumiya, Masaya & Yoon, Gyuyoung & Cho, Dong woo & Iyer-Raniga, Usha & Mazria, Edward & Lyu, Yanjie, 2020. "Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050," Energy, Elsevier, vol. 213(C).
    18. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    19. Zhao, Yaohua & Liu, Zichu & Quan, Zhenhua & Jing, Heran & Yang, Mingguang, 2022. "Experimental investigation and multi-objective optimization of ice thermal storage device with multichannel flat tube," Renewable Energy, Elsevier, vol. 195(C), pages 28-46.
    20. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.