IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p10941-d1543222.html
   My bibliography  Save this article

A Comprehensive Review on Technologies for Achieving Zero-Energy Buildings

Author

Listed:
  • Yushi Wang

    (Department of Construction Management, Dalian University of Technology, Dalian 116024, China)

  • Beining Hu

    (Department of Construction Management, Dalian University of Technology, Dalian 116024, China)

  • Xianhai Meng

    (School of Natural and Built Environment, Queen’s University Belfast, Belfast BT9 6AZ, UK)

  • Runjin Xiao

    (Department of Construction Management, Dalian University of Technology, Dalian 116024, China)

Abstract

The booming of the building industry has led to a sharp increase in energy consumption. The advancement of zero-energy buildings (ZEBs) is of great significance in mitigating climate change, improving energy efficiency, and thus realizing sustainable development of buildings. This paper reviews the recent progress of key technologies utilized in ZEBs, including energy-efficient measures (EEMs), renewable energy technologies (RETs), and building energy management system (BEMS), aiming to provide reference and support of the wider implementation of ZEBs. EEMs can reduce energy demand by optimizing the envelope design, phase change materials integration, efficient HVAC systems, and user behavior. The renewable energy sources discussed here are solar, biomass, wind, and geothermal energy, including distributed energy systems introduced to integrated various renewable resources and meet users’ demand. This study focuses on the application of building energy management in ZEBs, including energy use control, fault detection and diagnosis, and management optimization. The recent development of these three technologies mainly focuses on the combination with artificial intelligence (AI). In addition, this paper also emphasizes possible future research works about user behavior and zero-energy communities to improve the energy efficiency from a more complicated perspective.

Suggested Citation

  • Yushi Wang & Beining Hu & Xianhai Meng & Runjin Xiao, 2024. "A Comprehensive Review on Technologies for Achieving Zero-Energy Buildings," Sustainability, MDPI, vol. 16(24), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10941-:d:1543222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/10941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/10941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Quan & Li, Yanfei & Zhao, Dezong & Li, Ji & Williams, Huw & Xu, Hongming & Yan, Fuwu, 2022. "Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression," Applied Energy, Elsevier, vol. 305(C).
    2. Yuhong Zhao & Ruirui Liu & Zhansheng Liu & Yun Lu & Liang Liu & Jingjing Wang & Wenxiang Liu, 2023. "Enhancing Zero-Carbon Building Operation and Maintenance: A Correlation-Based Data Mining Approach for Database Analysis," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    3. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    4. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    5. Mohammed Qais & K. H. Loo & Hany M. Hasanien & Saad Alghuwainem, 2023. "Optimal Comfortable Load Schedule for Home Energy Management Including Photovoltaic and Battery Systems," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    6. Eguaras-Martínez, María & Vidaurre-Arbizu, Marina & Martín-Gómez, César, 2014. "Simulation and evaluation of Building Information Modeling in a real pilot site," Applied Energy, Elsevier, vol. 114(C), pages 475-484.
    7. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    8. Li, Danny H.W. & Cheung, K.L. & Wong, S.L. & Lam, Tony N.T., 2010. "An analysis of energy-efficient light fittings and lighting controls," Applied Energy, Elsevier, vol. 87(2), pages 558-567, February.
    9. Sadineni, Suresh B. & Boehm, Robert F., 2012. "Measurements and simulations for peak electrical load reduction in cooling dominated climate," Energy, Elsevier, vol. 37(1), pages 689-697.
    10. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    11. Wu, Wei & Skye, Harrison M. & Domanski, Piotr A., 2018. "Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings," Applied Energy, Elsevier, vol. 212(C), pages 577-591.
    12. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    13. Chen, Yibo & Tan, Hongwei, 2017. "Short-term prediction of electric demand in building sector via hybrid support vector regression," Applied Energy, Elsevier, vol. 204(C), pages 1363-1374.
    14. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    15. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    16. Guo, Jiacheng & Liu, Zhijian & Wu, Xuan & Wu, Di & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Two-layer co-optimization method for a distributed energy system combining multiple energy storages," Applied Energy, Elsevier, vol. 322(C).
    17. Rocha, Helder R.O. & Fiorotti, Rodrigo & Louzada, Danilo M. & Silvestre, Leonardo J. & Celeste, Wanderley C. & Silva, Jair A.L., 2024. "Net Zero Energy cost Building system design based on Artificial Intelligence," Applied Energy, Elsevier, vol. 355(C).
    18. Gruber, J.K. & Huerta, F. & Matatagui, P. & Prodanović, M., 2015. "Advanced building energy management based on a two-stage receding horizon optimization," Applied Energy, Elsevier, vol. 160(C), pages 194-205.
    19. Simone Forastiere & Cristina Piselli & Benedetta Pioppi & Carla Balocco & Fabio Sciurpi & Anna Laura Pisello, 2023. "Towards Achieving Zero Carbon Targets in Building Retrofits: A Multi-Parameter Building Information Modeling (BIM) Approach Applied to a Case Study of a Thermal Bath," Energies, MDPI, vol. 16(12), pages 1-23, June.
    20. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    21. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    22. Natanian, Jonathan & Aleksandrowicz, Or & Auer, Thomas, 2019. "A parametric approach to optimizing urban form, energy balance and environmental quality: The case of Mediterranean districts," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Hong & Li, Bingxu & Zhang, Yingbo & Pan, Jingjing & Wang, Shengwei, 2025. "A coordinated predictive scheduling and real-time adaptive control for integrated building energy systems with hybrid storage and rooftop PV," Renewable Energy, Elsevier, vol. 239(C).
    2. Li, Ye & Liu, Zihan & Sang, Yufeng & Hu, Jingfan & Li, Bojia & Zhang, Xinyu & Jurasz, Jakub & Zheng, Wandong, 2023. "Optimization of integrated energy system for low-carbon community considering the feasibility and application limitation," Applied Energy, Elsevier, vol. 348(C).
    3. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    4. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    5. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    6. Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
    7. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    9. Liang, Xinbin & Chen, Siliang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2023. "Domain knowledge decomposition of building energy consumption and a hybrid data-driven model for 24-h ahead predictions," Applied Energy, Elsevier, vol. 344(C).
    10. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    11. Lu, M.L. & Sun, Y.J. & Kokogiannakis, G. & Ma, Z.J., 2024. "Design of flexible energy systems for nearly/net zero energy buildings under uncertainty characteristics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    12. D'Agostino, Diana & De Falco, Francesco & Minelli, Federico & Minichiello, Francesco, 2024. "New robust multi-criteria decision-making framework for thermal insulation of buildings under conflicting stakeholder interests," Applied Energy, Elsevier, vol. 376(PA).
    13. Gao, Mingfei & Han, Zhonghe & Zhang, Ce & Li, Peng & Wu, Di & Li, Peng, 2023. "Optimal configuration for regional integrated energy systems with multi-element hybrid energy storage," Energy, Elsevier, vol. 277(C).
    14. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    15. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    16. William Mounter & Chris Ogwumike & Huda Dawood & Nashwan Dawood, 2021. "Machine Learning and Data Segmentation for Building Energy Use Prediction—A Comparative Study," Energies, MDPI, vol. 14(18), pages 1-42, September.
    17. Lu, Menglong & Sun, Yongjun & Ma, Zhenjun, 2024. "Multi-objective design optimization of multiple energy systems in net/nearly zero energy buildings under uncertainty correlations," Applied Energy, Elsevier, vol. 370(C).
    18. Vassiliades, C., 2024. "Optimizing energy efficiency in mediterranean single-family homes: A parametric study of building typology, orientation, and BIPV integration," Renewable Energy, Elsevier, vol. 237(PA).
    19. Ye Li & Shixuan Li & Shiyao Xia & Bojia Li & Xinyu Zhang & Boyuan Wang & Tianzhen Ye & Wandong Zheng, 2023. "A Review on the Policy, Technology and Evaluation Method of Low-Carbon Buildings and Communities," Energies, MDPI, vol. 16(4), pages 1-43, February.
    20. Fan, Guangyao & Liu, Zhijian & Liu, Xuan & Shi, Yaxin & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Zhang, Yulong, 2022. "Two-layer collaborative optimization for a renewable energy system combining electricity storage, hydrogen storage, and heat storage," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:10941-:d:1543222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.