IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4757-d1172662.html
   My bibliography  Save this article

Towards Achieving Zero Carbon Targets in Building Retrofits: A Multi-Parameter Building Information Modeling (BIM) Approach Applied to a Case Study of a Thermal Bath

Author

Listed:
  • Simone Forastiere

    (Department of Architecture (DIDA), University of Florence, Via della Mattonaia 8, 50121 Florence, Italy)

  • Cristina Piselli

    (Department of Architecture (DIDA), University of Florence, Via della Mattonaia 8, 50121 Florence, Italy)

  • Benedetta Pioppi

    (EValTech (R&D Department of Elettrica Valeri srl), Via Somigni snc, Gualdo Cattaneo, 06035 Perugia, Italy)

  • Carla Balocco

    (Department of Architecture (DIDA), University of Florence, Via della Mattonaia 8, 50121 Florence, Italy)

  • Fabio Sciurpi

    (Department of Architecture (DIDA), University of Florence, Via della Mattonaia 8, 50121 Florence, Italy)

  • Anna Laura Pisello

    (Department of Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy)

Abstract

As the urgency to mitigate climate change intensifies, the achievement of zero carbon targets in the built environment has become a critical objective. Building retrofitting plays a vital role in reducing energy consumption and carbon emissions in existing buildings. This paper presents an approach that combines Building Information Modeling (BIM) with multiple domains to strive for zero carbon targets in building retrofit projects. The proposed approach is based on a dynamic multi-parameter analysis that integrates indoor comfort, energy savings, CO 2eq reduction, and the social cost of carbon while considering investment costs. Renewable energy technologies, such as photovoltaic panels and solar thermal systems, are emphasized to achieve the desired zero-carbon outcomes. Real-time monitoring mechanisms enable continuous performance evaluation and adaptive retrofit strategies for further energy savings. This approach is validated through a case study of an existing thermal bath building, known as “Terme Lucane”, located in southern Italy. The results of the study demonstrate significant reductions in energy consumption and carbon emissions, highlighting the potential of the proposed approach to achieve zero carbon targets through the integration of multi-data BIM implementation. These findings offer a promising pathway for building retrofit projects aiming for zero carbon targets through multi-data BIM modeling.

Suggested Citation

  • Simone Forastiere & Cristina Piselli & Benedetta Pioppi & Carla Balocco & Fabio Sciurpi & Anna Laura Pisello, 2023. "Towards Achieving Zero Carbon Targets in Building Retrofits: A Multi-Parameter Building Information Modeling (BIM) Approach Applied to a Case Study of a Thermal Bath," Energies, MDPI, vol. 16(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4757-:d:1172662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Małgorzata Fedorczak-Cisak & Alicja Kowalska-Koczwara & Krzysztof Nering & Filip Pachla & Elżbieta Radziszewska-Zielina & Piotr Stecz & Tadeusz Tatara & Tomasz Jeleński, 2022. "Measurement and Diagnosis of Comfort in a Historic Building," Energies, MDPI, vol. 15(23), pages 1-28, November.
    2. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    3. Cristina Piselli & Jessica Romanelli & Matteo Di Grazia & Augusto Gavagni & Elisa Moretti & Andrea Nicolini & Franco Cotana & Francesco Strangis & Henk J. L. Witte & Anna Laura Pisello, 2020. "An Integrated HBIM Simulation Approach for Energy Retrofit of Historical Buildings Implemented in a Case Study of a Medieval Fortress in Italy," Energies, MDPI, vol. 13(10), pages 1-21, May.
    4. Li, Qing & Zhang, Lianying & Zhang, Limao & Wu, Xianguo, 2021. "Optimizing energy efficiency and thermal comfort in building green retrofit," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
    3. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk & Achard, Patrick, 2019. "Energy performance and economic analysis of a TIM-PCM wall under different climates," Energy, Elsevier, vol. 169(C), pages 1274-1291.
    4. Lei, Jiawei & Yang, Jinglei & Yang, En-Hua, 2016. "Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore," Applied Energy, Elsevier, vol. 162(C), pages 207-217.
    5. Li, Weilin & Jing, Mingyi & Li, Rufei & Gao, Junxi & Zhu, Jiayin & Li, Ruixin, 2023. "Study of the optimal placement of phase change materials in existing buildings for cooling load reduction - Take the Central Plain of China as an example," Renewable Energy, Elsevier, vol. 209(C), pages 71-84.
    6. Konstantinos Sofias & Zoe Kanetaki & Constantinos Stergiou & Sébastien Jacques, 2023. "Combining CAD Modeling and Simulation of Energy Performance Data for the Retrofit of Public Buildings," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    7. K. S. Reddy & Vijay Mudgal & Tapas K. Mallick, 2017. "Thermal Performance Analysis of Multi-Phase Change Material Layer-Integrated Building Roofs for Energy Efficiency in Built-Environment," Energies, MDPI, vol. 10(9), pages 1-15, September.
    8. Abdelkader Sarri & Saleh Nasser Al-Saadi & Müslüm Arıcı & Djamel Bechki & Hamza Bouguettaia, 2023. "Architectural Design Strategies for Enhancement of Thermal and Energy Performance of PCMs-Embedded Envelope System for an Office Building in a Typical Arid Saharan Climate," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    9. Rolka, Paulina & Przybylinski, Tomasz & Kwidzinski, Roman & Lackowski, Marcin, 2021. "The heat capacity of low-temperature phase change materials (PCM) applied in thermal energy storage systems," Renewable Energy, Elsevier, vol. 172(C), pages 541-550.
    10. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2015. "Modeling and forecasting energy consumption for heterogeneous buildings using a physical–statistical approach," Applied Energy, Elsevier, vol. 144(C), pages 261-275.
    11. Chai, Jiale & Huang, Pei & Sun, Yongjun, 2019. "Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions," Energy, Elsevier, vol. 185(C), pages 176-189.
    12. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    13. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events," Applied Energy, Elsevier, vol. 194(C), pages 410-421.
    14. Cristina Piselli & Alessio Guastaveglia & Jessica Romanelli & Franco Cotana & Anna Laura Pisello, 2020. "Facility Energy Management Application of HBIM for Historical Low-Carbon Communities: Design, Modelling and Operation Control of Geothermal Energy Retrofit in a Real Italian Case Study," Energies, MDPI, vol. 13(23), pages 1-18, December.
    15. Xu, Bin & Chen, Xing-ni & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Optimizing the applicability of cool paint through phase change material according to the energy consumption characteristics in different regions," Renewable Energy, Elsevier, vol. 212(C), pages 953-971.
    16. Lin, Wenye & Ma, Zhenjun, 2016. "Using Taguchi-Fibonacci search method to optimize phase change materials enhanced buildings with integrated solar photovoltaic thermal collectors," Energy, Elsevier, vol. 106(C), pages 23-37.
    17. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Application of PCM energy storage in combination with night ventilation for space cooling," Applied Energy, Elsevier, vol. 158(C), pages 412-421.
    18. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    19. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    20. Flavio Rosa, 2020. "Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints," Energies, MDPI, vol. 13(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4757-:d:1172662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.