IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp778-791.html
   My bibliography  Save this article

Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making

Author

Listed:
  • Zhang, Chong
  • Xue, Xue
  • Du, Qianzhou
  • Luo, Yimo
  • Gang, Wenjie

Abstract

Distributed energy systems (DESs) are becoming increasingly popular because of their high-energy efficiency and low pollution emissions. Accurate performance evaluation of such systems is critical for processes at the early design stages. However, there are considerable uncertainties in terms of the parameters used for performance evaluation and design optimization, including component efficiencies, customer demands, and energy markets. These uncertainties can significantly influence the performance of DESs. Without consideration of these uncertainties, the performance of DESs can be overestimated or underestimated, which leads to inaccurate decision-making. Therefore, this paper presents a comprehensive evaluation of the performance of DESs by considering uncertainties in 12 parameters that relate to the electrical and thermal efficiencies of generators, efficiency of chillers and pumps, load density, energy markets, and so on. The energy and economic performance of DESs under each uncertainty are analyzed and compared with that of conventional energy systems. The suitable conditions for using DESs and other factors that can influence their performance are determined. The results of this study can serve as a guide for design optimization and policy development to promote the use of DESs in China.

Suggested Citation

  • Zhang, Chong & Xue, Xue & Du, Qianzhou & Luo, Yimo & Gang, Wenjie, 2019. "Study on the performance of distributed energy systems based on historical loads considering parameter uncertainties for decision making," Energy, Elsevier, vol. 176(C), pages 778-791.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:778-791
    DOI: 10.1016/j.energy.2019.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenghong Gu & Da Xie & Junbo Sun & Xitian Wang & Qian Ai, 2015. "Optimal Operation of Combined Heat and Power System Based on Forecasted Energy Prices in Real-Time Markets," Energies, MDPI, vol. 8(12), pages 1-16, December.
    2. Ghadimi, P. & Kara, S. & Kornfeld, B., 2014. "The optimal selection of on-site CHP systems through integrated sizing and operational strategy," Applied Energy, Elsevier, vol. 126(C), pages 38-46.
    3. Pan, Yu & Liu, Liuchen & Zhu, Tong & Zhang, Tao & Zhang, Junying, 2017. "Feasibility analysis on distributed energy system of Chongming County based on RETScreen software," Energy, Elsevier, vol. 130(C), pages 298-306.
    4. Ming, Zeng & Shaojie, Ouyang & Hui, Shi & Yujian, Ge & Qiqi, Qian, 2015. "Overall review of distributed energy development in China: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1226-1238.
    5. Yan, Bofeng & Xue, Song & Li, Yuanfei & Duan, Jinhui & Zeng, Ming, 2016. "Gas-fired combined cooling, heating and power (CCHP) in Beijing: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 118-131.
    6. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    7. Li, Minzhi & Jiang, Xi Zhuo & Zheng, Danxing & Zeng, Guangbiao & Shi, Lin, 2016. "Thermodynamic boundaries of energy saving in conventional CCHP (Combined Cooling, Heating and Power) systems," Energy, Elsevier, vol. 94(C), pages 243-249.
    8. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    9. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    10. Gang, Wenjie & Wang, Shengwei & Gao, Diance & Xiao, Fu, 2015. "Performance assessment of district cooling systems for a new development district at planning stage," Applied Energy, Elsevier, vol. 140(C), pages 33-43.
    11. Liu, Yaobin, 2009. "Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)," Energy, Elsevier, vol. 34(11), pages 1846-1854.
    12. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    13. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    14. Gao, Jiajia & Kang, Jing & Zhang, Chong & Gang, Wenjie, 2018. "Energy performance and operation characteristics of distributed energy systems with district cooling systems in subtropical areas under different control strategies," Energy, Elsevier, vol. 153(C), pages 849-860.
    15. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    16. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    17. Borges, Carmen Lucia Tancredo, 2012. "An overview of reliability models and methods for distribution systems with renewable energy distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4008-4015.
    18. Wang, Zhenfeng & Xu, Guangyin & Wang, Heng & Ren, Jingzheng, 2019. "Distributed energy system for sustainability transition: A comprehensive assessment under uncertainties based on interval multi-criteria decision making method by coupling interval DEMATEL and interva," Energy, Elsevier, vol. 169(C), pages 750-761.
    19. Cho, Heejin & Mago, Pedro J. & Luck, Rogelio & Chamra, Louay M., 2009. "Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme," Applied Energy, Elsevier, vol. 86(12), pages 2540-2549, December.
    20. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    21. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    22. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    23. Ren, Hongbo & Gao, Weijun, 2010. "A MILP model for integrated plan and evaluation of distributed energy systems," Applied Energy, Elsevier, vol. 87(3), pages 1001-1014, March.
    24. Kang, Jing & Wang, Shengwei & Yan, Chengchu, 2019. "A new distributed energy system configuration for cooling dominated districts and the performance assessment based on real site measurements," Renewable Energy, Elsevier, vol. 131(C), pages 390-403.
    25. Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
    26. Da Xie & Yupu Lu & Junbo Sun & Chenghong Gu & Jilai Yu, 2016. "Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization," Energies, MDPI, vol. 9(6), pages 1-17, June.
    27. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q. & Wang, R.Z., 2016. "Impacts of feed-in tariff policies on design and performance of CCHP system in different climate zones," Applied Energy, Elsevier, vol. 175(C), pages 168-179.
    28. Tichi, S.G. & Ardehali, M.M. & Nazari, M.E., 2010. "Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm," Energy Policy, Elsevier, vol. 38(10), pages 6240-6250, October.
    29. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    30. Cedillos Alvarado, Dagoberto & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2016. "A Technology Selection and Operation (TSO) optimisation model for distributed energy systems: Mathematical formulation and case study," Applied Energy, Elsevier, vol. 180(C), pages 491-503.
    31. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Coupling optimization of urban spatial structure and neighborhood-scale distributed energy systems," Energy, Elsevier, vol. 144(C), pages 472-481.
    32. Ren, Hongbo & Zhou, Weisheng & Gao, Weijun, 2012. "Optimal option of distributed energy systems for building complexes in different climate zones in China," Applied Energy, Elsevier, vol. 91(1), pages 156-165.
    33. Liu, Liuchen & Zhu, Tong & Pan, Yu & Wang, Hai, 2017. "Multiple energy complementation based on distributed energy systems – Case study of Chongming county, China," Applied Energy, Elsevier, vol. 192(C), pages 329-336.
    34. Wang, Lang & Lu, Jianfeng & Wang, Weilong & Ding, Jing, 2016. "Energy, environmental and economic evaluation of the CCHP systems for a remote island in south of China," Applied Energy, Elsevier, vol. 183(C), pages 874-883.
    35. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2011. "Influence analysis of building types and climate zones on energetic, economic and environmental performances of BCHP systems," Applied Energy, Elsevier, vol. 88(9), pages 3097-3112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Meng & Yu, Hang & Yang, Yikun & Lin, Xiaoyu & Guo, Haijin & Li, Chaoen & Zhou, Yue & Jing, Rui, 2021. "Unlocking emerging impacts of carbon tax on integrated energy systems through supply and demand co-optimization," Applied Energy, Elsevier, vol. 302(C).
    2. Wang, Meng & Yu, Hang & Lin, Xiaoyu & Jing, Rui & He, Fangjun & Li, Chaoen, 2020. "Comparing stochastic programming with posteriori approach for multi-objective optimization of distributed energy systems under uncertainty," Energy, Elsevier, vol. 210(C).
    3. Mu, Yunfei & Wang, Congshan & Cao, Yan & Jia, Hongjie & Zhang, Qingzhu & Yu, Xiaodan, 2022. "A CVaR-based risk assessment method for park-level integrated energy system considering the uncertainties and correlation of energy prices," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jiajia & Kang, Jing & Zhang, Chong & Gang, Wenjie, 2018. "Energy performance and operation characteristics of distributed energy systems with district cooling systems in subtropical areas under different control strategies," Energy, Elsevier, vol. 153(C), pages 849-860.
    2. Yifang Tang & Zhiqiang Liu & Lan Li, 2019. "Performance Comparison of a Distributed Energy System under Different Control Strategies with a Conventional Energy System," Energies, MDPI, vol. 12(24), pages 1-17, December.
    3. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    4. Kang, Jing & Wang, Shengwei, 2018. "Robust optimal design of distributed energy systems based on life-cycle performance analysis using a probabilistic approach considering uncertainties of design inputs and equipment degradations," Applied Energy, Elsevier, vol. 231(C), pages 615-627.
    5. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    6. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    7. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    8. Alfredo Gimelli & Massimiliano Muccillo, 2018. "The Key Role of the Vector Optimization Algorithm and Robust Design Approach for the Design of Polygeneration Systems," Energies, MDPI, vol. 11(4), pages 1-21, April.
    9. Jing, Rui & Wang, Meng & Liang, Hao & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2018. "Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints," Applied Energy, Elsevier, vol. 231(C), pages 534-548.
    10. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    11. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    12. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    13. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    14. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
    15. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    16. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    17. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    18. Ying Zhu & Quanling Tong & Xueting Zeng & Xiaxia Yan & Yongping Li & Guohe Huang, 2019. "Optimal Design of a Distributed Energy System Using the Functional Interval Model That Allows Reduced Carbon Emissions in Guanzhong, a Rural Area of China," Sustainability, MDPI, vol. 11(7), pages 1-22, April.
    19. Fichera, Alberto & Frasca, Mattia & Volpe, Rosaria, 2017. "Complex networks for the integration of distributed energy systems in urban areas," Applied Energy, Elsevier, vol. 193(C), pages 336-345.
    20. Chuat, Arthur & Terrier, Cédric & Schnidrig, Jonas & Maréchal, François, 2024. "Identification of typical district configurations: A two-step global sensitivity analysis framework," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:778-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.