IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v104y2014i5p557-62.html

The Costs and Consequences of Clean Air Act Regulation of CO2 from Power Plants

Author

Listed:
  • Dallas Burtraw
  • Josh Linn
  • Karen Palmer
  • Anthony Paul

Abstract

US climate policy is unfolding under the Clean Air Act. Mobile source and construction permitting regulations are in place. Most important, EPA and the states will determine the form and stringency of the regulations for power plants. Various approaches would create an implicit price on emitting greenhouse gases and create valuable assets that would be distributed differently among electricity producers, consumers, and the government. We compare a tradable performance standard with several cap-and-trade policies. Distributing asset values to fossil-fueled producers and consumers has small effects on average electricity prices but imposes greater social cost than a revenue-raising policy.

Suggested Citation

  • Dallas Burtraw & Josh Linn & Karen Palmer & Anthony Paul, 2014. "The Costs and Consequences of Clean Air Act Regulation of CO2 from Power Plants," American Economic Review, American Economic Association, vol. 104(5), pages 557-562, May.
  • Handle: RePEc:aea:aecrev:v:104:y:2014:i:5:p:557-62
    Note: DOI: 10.1257/aer.104.5.557
    as

    Download full text from publisher

    File URL: http://www.aeaweb.org/articles.php?doi=10.1257/aer.104.5.557
    Download Restriction: no

    File URL: http://www.aeaweb.org/aer/data/10405/P2014_1162_data.zip
    Download Restriction: no

    File URL: http://www.aeaweb.org/aer/ds/10405/P2014_1162_ds.zip
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Becker, Jonathon M., 2023. "Tradable performance standards in a dynamic context," Resource and Energy Economics, Elsevier, vol. 73(C).
    2. Xenophon, Aleksis Kazubiernis & Hill, David John, 2020. "Adaptive mechanisms to refund emissions payments," Applied Energy, Elsevier, vol. 278(C).
    3. Palmer, Karen & Paul, Anthony, 2015. "A Primer on Comprehensive Policy Options for States to Comply with the Clean Power Plan," RFF Working Paper Series dp-15-15, Resources for the Future.
    4. Christian von Hirschhausen, 2014. "The German Energiewend - An Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    5. Paul, Anthony & Palmer, Karen & Woerman, Matt, 2014. "Designing by Degrees: Flexibility and Cost-Effectiveness in Climate PolicyAbstract: Substantially reducing carbon dioxide (CO2) emissions from electricity production will require a transformation of t," RFF Working Paper Series dp-14-05, Resources for the Future.
    6. Jonathan J Buonocore & Kathleen F Lambert & Dallas Burtraw & Samantha Sekar & Charles T Driscoll, 2016. "An Analysis of Costs and Health Co-Benefits for a U.S. Power Plant Carbon Standard," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-11, June.
    7. Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
    8. Ying Sun & Fengqin Liu & Huaping Sun, 2022. "Does Standardization Improve Carbon Emission Efficiency as Soft Infrastructure? Evidence from China," Energies, MDPI, vol. 15(6), pages 1-17, March.
    9. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Mier, Mathias & Adelowo, Jacqueline & Weissbart, Christoph, 2024. "Complementary taxation of carbon emissions and local air pollution," Energy Economics, Elsevier, vol. 132(C).
    11. Don Fullerton & Daniel H. Karney, 2018. "Potential State‐Level Carbon Revenue Under The Clean Power Plan," Contemporary Economic Policy, Western Economic Association International, vol. 36(1), pages 149-166, January.
    12. Anthony Paul & Karen Palmer & Matthew Woerman, 2015. "Incentives, Margins, And Cost Effectiveness In Comprehensive Climate Policy For The Power Sector," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-27, November.
    13. Tol, Richard S.J., 2017. "The structure of the climate debate," Energy Policy, Elsevier, vol. 104(C), pages 431-438.
    14. E. Mark Curtis, 2014. "Who Loses Under Power Plant Cap-and-Trade Programs?," NBER Working Papers 20808, National Bureau of Economic Research, Inc.
    15. Fell, Harrison & Maniloff, Peter, 2018. "Leakage in regional environmental policy: The case of the regional greenhouse gas initiative," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 1-23.
    16. Hayibo, Koami Soulemane & Pearce, Joshua M., 2021. "A review of the value of solar methodology with a case study of the U.S. VOS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Fullerton, Don & Karney, Daniel H., 2018. "Multiple pollutants, co-benefits, and suboptimal environmental policies," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 52-71.
    18. Healey, Stephen & Jaccard, Mark, 2016. "Implications of a US electricity standard for final energy demand," Energy Economics, Elsevier, vol. 60(C), pages 469-475.
    19. Humphrey, Jacquelyn E. & Li, Yong, 2021. "Who goes green: Reducing mutual fund emissions and its consequences," Journal of Banking & Finance, Elsevier, vol. 126(C).
    20. Palmer, Karen & Burtraw, Dallas & Paul, Anthony & Yin, Hang, 2017. "Using Production Incentives to Avoid Emissions Leakage," Energy Economics, Elsevier, vol. 68(S1), pages 45-56.
    21. Zhou, Yishu & Huang, Ling, 2016. "Have U.S. power plants become less technically efficient? The impact of carbon emission regulation," Energy Economics, Elsevier, vol. 58(C), pages 105-115.
    22. Li, Xing & Liu, Zimin & Wu, Honglei & Yang, Dan, 2024. "Calculation and optimization of China's power distortion under carbon peaking target," Energy, Elsevier, vol. 306(C).

    More about this item

    JEL classification:

    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:104:y:2014:i:5:p:557-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.