IDEAS home Printed from https://ideas.repec.org/a/aen/eeepjl/eeep3_2_01intro.html
   My bibliography  Save this article

The German Energiewend - An Introduction

Author

Listed:
  • Christian von Hirschhausen

Abstract

The German government's multi-decade effort to transition to a low-carbon, renew-ables-based energy economy is now commonly known as "energiewende" ("energy transition"). The transition has four major objectives: increasing the share of renewables to at least 80% (in electricity) and 60% for total final energy consumption, reducing greenhouse gas emissions by 80-95% (basis: 1990), phasing out nuclear energy by 2022, and increasing energy efficiency significantly; the government also encourages broad public participation in energy policy discussions and profit sharing. This paper reviews the major events leading to the decision to go "energiewende" in 2010/11 and the ensuing developments in the electricity sector. We survey the rapidly growing body of literature on the German energiewende and place the other core papers of this Special Section of EEEP in perspective.

Suggested Citation

  • Christian von Hirschhausen, 2014. "The German Energiewend - An Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
  • Handle: RePEc:aen:eeepjl:eeep3_2_01intro
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/eeeparticle.aspx?id=64
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dallas Burtraw & Josh Linn & Karen Palmer & Anthony Paul, 2014. "The Costs and Consequences of Clean Air Act Regulation of CO2 from Power Plants," American Economic Review, American Economic Association, vol. 104(5), pages 557-562, May.
    2. repec:aen:journl:eeep3_2_04gerbaulet is not listed on IDEAS
    3. Jonas Egerer & Clemens Gerbaulet & Casimir Lorenz, 2013. "European Electricity Grid Infrastructure Expansion in a 2050 Context," Discussion Papers of DIW Berlin 1299, DIW Berlin, German Institute for Economic Research.
    4. Clemens Gerbaulet, Casimir Lorenz, Julia Rechlitz, and Tim Hainbach, 2014. "Regional Cooperation Potentials in the European Context: Survey and Case Study Evidence from the Alpine Region," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    5. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    6. Friedrich Kunz and Hannes Weigt, 2014. "Germanys Nuclear Phase Out - A Survey of the Impact since 2011 and Outlook to 2023," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    7. repec:aen:journl:eeep3_2_02kunz is not listed on IDEAS
    8. Christian von Hirschhausen & Felix Reitz, 2014. "Atomkraft: Auslaufmodell mit ungelöster Endlagerfrage," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 81(13), pages 267-275.
    9. Friedrich Kunz & Christian von Hirschhausen & Dominik Möst & Hannes Weigt, 2011. "Security of Supply and Electricity Network Flows after a Phase-Out of Germany’s Nuclear Plants: Any Trouble Ahead?," RSCAS Working Papers 2011/32, European University Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddiqui, Afzal S. & Tanaka, Makoto & Chen, Yihsu, 2019. "Sustainable transmission planning in imperfectly competitive electricity industries: Balancing economic and environmental outcomes," European Journal of Operational Research, Elsevier, vol. 275(1), pages 208-223.
    2. Rocha, Paula & Kaut, Michal & Siddiqui, Afzal S., 2016. "Energy-efficient building retrofits: An assessment of regulatory proposals under uncertainty," Energy, Elsevier, vol. 101(C), pages 278-287.
    3. Lone Werner & Bert Scholtens, 2017. "Firm Type, Feed-in Tariff, and Wind Energy Investment in Germany: An Investigation of Decision Making Factors of Energy Producers Regarding Investing in Wind Energy Capacity," Journal of Industrial Ecology, Yale University, vol. 21(2), pages 402-411, April.
    4. Višković, Verena & Chen, Yihsu & Siddiqui, Afzal S., 2017. "Implications of the EU Emissions Trading System for the South-East Europe Regional Electricity Market," Energy Economics, Elsevier, vol. 65(C), pages 251-261.
    5. Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.
    6. Raphael Bointner & Simon Pezzutto & Wolfram Sparber, 2016. "Scenarios of public energy research and development expenditures: financing energy innovation in Europe," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 470-488, July.
    7. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2017. "Does renewable energy generation decrease the volatility of electricity prices? An analysis of Denmark and Germany," Energy Economics, Elsevier, vol. 62(C), pages 270-282.
    8. Hake, Jürgen-Friedrich & Fischer, Wolfgang & Venghaus, Sandra & Weckenbrock, Christoph, 2015. "The German Energiewende – History and status quo," Energy, Elsevier, vol. 92(P3), pages 532-546.
    9. Ringel, Marc & Schlomann, Barbara & Krail, Michael & Rohde, Clemens, 2016. "Towards a green economy in Germany? The role of energy efficiency policies," Applied Energy, Elsevier, vol. 179(C), pages 1293-1303.
    10. Debia, Sébastien & Pineau, Pierre-Olivier & Siddiqui, Afzal S., 2019. "Strategic use of storage: The impact of carbon policy, resource availability, and technology efficiency on a renewable-thermal power system," Energy Economics, Elsevier, vol. 80(C), pages 100-122.
    11. Hitaj, Claudia & Löschel, Andreas, 2019. "The impact of a feed-in tariff on wind power development in Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 18-35.
    12. Knaut, Andreas & Tode, Christian & Lindenberger, Dietmar & Malischek, Raimund & Paulus, Simon & Wagner, Johannes, 2016. "The reference forecast of the German energy transition—An outlook on electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 477-491.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franziska Holz & Christian Von Hirschhausen, 2013. "The Infrastructure Implications Of The Energy Transformation In Europe Until 2050 — Lessons From The Emf28 Modeling Exercise," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-26.
    2. Fraunholz, Christoph & Hladik, Dirk & Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2021. "On the long-term efficiency of market splitting in Germany," Energy Policy, Elsevier, vol. 149(C).
    3. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    4. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    5. Mulder, Machiel & Scholtens, Bert, 2016. "A plant-level analysis of the spill-over effects of the German Energiewende," Applied Energy, Elsevier, vol. 183(C), pages 1259-1271.
    6. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    7. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    8. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    9. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    10. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    11. Pothen, Frank & Hübler, Michael, 2021. "A forward calibration method for analyzing energy policy in new quantitative trade models," Energy Economics, Elsevier, vol. 100(C).
    12. Iegor Riepin & Thomas Mobius & Felix Musgens, 2020. "Modelling uncertainty in coupled electricity and gas systems -- is it worth the effort?," Papers 2008.07221, arXiv.org, revised Sep 2020.
    13. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    14. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    15. Johnson, Nils & Strubegger, Manfred & McPherson, Madeleine & Parkinson, Simon C. & Krey, Volker & Sullivan, Patrick, 2017. "A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system," Energy Economics, Elsevier, vol. 64(C), pages 651-664.
    16. Palmer, Karen & Paul, Anthony, 2015. "A Primer on Comprehensive Policy Options for States to Comply with the Clean Power Plan," RFF Working Paper Series dp-15-15, Resources for the Future.
    17. Jonathan J Buonocore & Kathleen F Lambert & Dallas Burtraw & Samantha Sekar & Charles T Driscoll, 2016. "An Analysis of Costs and Health Co-Benefits for a U.S. Power Plant Carbon Standard," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-11, June.
    18. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    19. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:eeepjl:eeep3_2_01intro. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.