IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1299.html
   My bibliography  Save this paper

European Electricity Grid Infrastructure Expansion in a 2050 Context

Author

Listed:
  • Jonas Egerer
  • Clemens Gerbaulet
  • Casimir Lorenz

Abstract

The European climate targets until 2050 require an adaptation of the generation portfolio in terms of renewable and fossil based generation. Assumptions on the timeline of the targets and the availability and costs of generation technologies are used in energy system models to optimize the cost minimal system transformation. The results include investments in generation technologies and their national allocation. Yet, the models are limited to the national aggregation and lack the spatial resolution required to represent individual network investments and related costs. In this paper, we analyze the impact the results of an energy system model have on demand for network expansion in the European power grid in a line-sharp representation. A cost minimizing mixed-integer problem (MIP) model calculates where in the European electricity grid expansion needs to take place for different time steps (2020/30/40/50) in order to obtain minimal total costs for power plant dispatch and grid expansion. Scenarios based on the generation infrastructure options from the PRIMES EU-wide energy model scenarios invoke different expansion needs and are compared. The model allows investments in the AC network and an overlay DC grid. Resulting investment costs are compared to the numbers of the European Energy Roadmap 2050.

Suggested Citation

  • Jonas Egerer & Clemens Gerbaulet & Casimir Lorenz, 2013. "European Electricity Grid Infrastructure Expansion in a 2050 Context," Discussion Papers of DIW Berlin 1299, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1299
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.421678.de/dp1299.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 119-148.
    2. Egerer, Jonas & Kunz, Friedrich & Hirschhausen, Christian von, 2013. "Development scenarios for the North and Baltic Seas Grid – A welfare economic analysis," Utilities Policy, Elsevier, vol. 27(C), pages 123-134.
    3. Weigt, Hannes & Hirschhausen, Christian von, 2008. "Price formation and market power in the German wholesale electricity market in 2006," Energy Policy, Elsevier, vol. 36(11), pages 4227-4234, November.
    4. Leuthold, Florian & Jeske, Till & Weigt, Hannes & von Hirschhausen, Christian, 2009. "When the Wind Blows Over Europe: A Simulation Analysis and the Impact of Grid Extensions," MPRA Paper 65655, University Library of Munich, Germany.
    5. Juan Rosellón & Wolf-Peter Schill & Jonas Egerer, 2011. "Regulated Expansion of Electricity Transmission Networks: The Effects of Fluctuating Demand and Wind Generation," Working papers DTE 523, CIDE, División de Economía.
    6. Weigt, Hannes & Jeske, Till & Leuthold, Florian & von Hirschhausen, Christian, 2010. ""Take the long way down": Integration of large-scale North Sea wind using HVDC transmission," Energy Policy, Elsevier, vol. 38(7), pages 3164-3173, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    2. Franziska Holz & Christian Von Hirschhausen, 2013. "The Infrastructure Implications Of The Energy Transformation In Europe Until 2050 — Lessons From The Emf28 Modeling Exercise," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-26.
    3. Jan Abrell & Clemens Gerbaulet & Franziska Holz & Casimir Lorenz & Hannes Weigt, 2013. "Combining Energy Networks: The Impact of Europe's Natural Gas Network on Electricity Markets until 2050," Discussion Papers of DIW Berlin 1317, DIW Berlin, German Institute for Economic Research.
    4. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    5. Frysztacki, Martha Maria & Hörsch, Jonas & Hagenmeyer, Veit & Brown, Tom, 2021. "The strong effect of network resolution on electricity system models with high shares of wind and solar," Applied Energy, Elsevier, vol. 291(C).
    6. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    7. Creutzig, Felix & Goldschmidt, Jan Christoph & Lehmann, Paul & Schmid, Eva & von Blücher, Felix & Breyer, Christian & Fernandez, Blanca & Jakob, Michael & Knopf, Brigitte & Lohrey, Steffen & Susca, Ti, 2014. "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1015-1028.
    8. Christian von Hirschhausen, 2014. "The German Energiewend - An Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    9. Zerrahn, Alexander & Huppmann, Daniel, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100459, Verein für Socialpolitik / German Economic Association.
    10. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    2. Jonas Egerer, Clemens Gerbaulet, and Casimir Lorenz, 2016. "European Electricity Grid Infrastructure Expansion in a 2050 Context," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    3. Herrera, Luis Ángel & Rosellón, Juan, 2014. "On distributive effects of optimal regulation for power grid expansion," Energy Policy, Elsevier, vol. 69(C), pages 189-204.
    4. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    5. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    6. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    7. Schröder, Andreas, 2012. "An Electricity Market Model with Generation Capacity Investment under Uncertainty," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62068, Verein für Socialpolitik / German Economic Association.
    8. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    9. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    10. Claudia Kemfert & Friedrich Kunz & Juan Rosellón, 2015. "A Welfare Analysis of the Electricity Transmission Regulatory Regime in Germany," Discussion Papers of DIW Berlin 1492, DIW Berlin, German Institute for Economic Research.
    11. Weigt, Hannes, 2009. "A Review of Liberalization and Modeling of Electricity Markets," MPRA Paper 65651, University Library of Munich, Germany.
    12. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    13. Wolf-Peter Schill & Juan Rosellón & Jonas Egerer, 2011. "Regulated Expansion of Electricity Transmission Networks: The Effects of Fluctuating Demand and Wind Generation," Discussion Papers of DIW Berlin 1109, DIW Berlin, German Institute for Economic Research.
    14. Pietz, Matthäus, 2009. "Risk premia in electricity wholesale spot markets: empirical evidence from Germany," CEFS Working Paper Series 2009-11, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    15. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    16. Schönheit, David & Hladik, Dirk & Hobbie, Hannes & Möst, Dominik, 2020. "ELMOD documentation: Modeling of flow-based market coupling and congestion management," EconStor Preprints 217278, ZBW - Leibniz Information Centre for Economics.
    17. Hiroux, C. & Saguan, M., 2010. "Large-scale wind power in European electricity markets: Time for revisiting support schemes and market designs?," Energy Policy, Elsevier, vol. 38(7), pages 3135-3145, July.
    18. repec:dui:wpaper:1504 is not listed on IDEAS
    19. Germeshausen, Robert & Wölfing, Nikolas, 2019. "How marginal is lignite? Two simple approaches to determine price-setting technologies in power markets," ZEW Discussion Papers 19-031, ZEW - Leibniz Centre for European Economic Research.
    20. Glachant, Jean-Michel & Ruester, Sophia, 2014. "The EU internal electricity market: Done forever?," Utilities Policy, Elsevier, vol. 30(C), pages 1-7.
    21. Ibarra-Yunez, Alejandro, 2015. "Energy reform in Mexico: Imperfect unbundling in the electricity sector," Utilities Policy, Elsevier, vol. 35(C), pages 19-27.

    More about this item

    Keywords

    Electricity; European Transmission Network; Investment Model;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • H54 - Public Economics - - National Government Expenditures and Related Policies - - - Infrastructures
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.