IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/217278.html
   My bibliography  Save this paper

ELMOD documentation: Modeling of flow-based market coupling and congestion management

Author

Listed:
  • Schönheit, David
  • Hladik, Dirk
  • Hobbie, Hannes
  • Möst, Dominik

Abstract

This paper documents ELMOD, a linear optimization model with a nodal pricing approach, covering the energy market and electricity grid of Europe. In the presented formulation, ELMOD is used for the computation of market coupling results without grid constraints and subsequent computation of congestion management, i.e. redispatch and curtailment. Furthermore, flow-based market coupling is implemented, as the EU-stipulated calculation method for cross-border trading capacities. A short case study presents exemplary results for market outcomes based on flow-based market coupling, i.e. n-1 secure trading domains, import-export balances, and zonal prices, as well as necessary congestion management measures.

Suggested Citation

  • Schönheit, David & Hladik, Dirk & Hobbie, Hannes & Möst, Dominik, 2020. "ELMOD documentation: Modeling of flow-based market coupling and congestion management," EconStor Preprints 217278, ZBW - Leibniz Information Centre for Economics.
  • Handle: RePEc:zbw:esprep:217278
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/217278/1/FINAL_VERSION_ELMOD_Model_Doc_FBMC%26CM.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    2. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Fraunholz, Christoph & Hladik, Dirk & Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2020. "On the long-term efficiency of market splitting in Germany," Working Paper Series in Production and Energy 38, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    4. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    5. Weigt, Hannes & Jeske, Till & Leuthold, Florian & von Hirschhausen, Christian, 2010. ""Take the long way down": Integration of large-scale North Sea wind using HVDC transmission," Energy Policy, Elsevier, vol. 38(7), pages 3164-3173, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lieberwirth, Martin & Hobbie, Hannes, 2022. "Decarbonizing the Industry Sector and its Effect on Electricity Transmission Grid Operation - Implications from a Model Based Analysis for Germany," EconStor Preprints 261839, ZBW - Leibniz Information Centre for Economics.
    2. Kittel, Martin & Hobbie, Hannes & Dierstein, Constantin, 2022. "Temporal aggregation of time series to identify typical hourly electricity system states: A systematic assessment of relevant cluster algorithms," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 247, pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    2. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Jonas Egerer, Clemens Gerbaulet, and Casimir Lorenz, 2016. "European Electricity Grid Infrastructure Expansion in a 2050 Context," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    4. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    5. Bjørndal, Endre & Bjørndal, Mette & Gribkovskaia, Victoria, 2014. "A Nodal Pricing Model for the Nordic Electricity Market," Discussion Papers 2014/43, Norwegian School of Economics, Department of Business and Management Science.
    6. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    7. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    8. Karel Janda & Jan Málek & Lukáš Rečka, 2017. "Vliv obnovitelných zdrojů na českou soustavu přenosu elektřiny [The Impact of Renewable Energy Sources on the Czech Electricity Transmission System]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(6), pages 728-750.
    9. Dirk Hladik & Christoph Fraunholz & Matthias Kühnbach & Pia Manz & Robert Kunze, 2020. "Insights on Germany’s Future Congestion Management from a Multi-Model Approach," Energies, MDPI, vol. 13(16), pages 1-27, August.
    10. Friedrich Kunz and Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management: Evidence from Central Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    11. Karel Janda & Jan Malek & Lukas Recka, 2017. "The Influence of Renewable Energy Sources on the Czech Electricity Transmission System," Working Papers IES 2017/06, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2017.
    12. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2016. "How much is enough? Optimal support payments in a renewable-rich power system," Energy, Elsevier, vol. 117(P1), pages 300-313.
    13. Kunz, Friedrich & Neuhoff, Karsten & Rosellón, Juan, 2016. "FTR allocations to ease transition to nodal pricing: An application to the German power system," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 60, pages 176-185.
    14. Fraunholz, Christoph & Hladik, Dirk & Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2021. "On the long-term efficiency of market splitting in Germany," Energy Policy, Elsevier, vol. 149(C).
    15. Kunz, Friedrich & Zerrahn, Alexander, 2015. "Benefits of coordinating congestion management in electricity transmission networks: Theory and application to Germany," Utilities Policy, Elsevier, vol. 37(C), pages 34-45.
    16. J. Micha Steinhäuser & Klaus Eisenack, 2015. "Spatial incidence of large-scale power plant curtailment costs," Working Papers V-379-15, University of Oldenburg, Department of Economics, revised Jul 2015.
    17. Kunz, Friedrich, 2018. "Quo Vadis? (Un)scheduled electricity flows under market splitting and network extension in central Europe," Energy Policy, Elsevier, vol. 116(C), pages 198-209.
    18. Zepter, Jan Martin & Weibezahn, Jens, 2019. "Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation," Applied Energy, Elsevier, vol. 243(C), pages 336-349.
    19. N. Gülpınar & F. Oliveira, 2014. "Analysis of relationship between forward and spot markets in oligopolies under demand and cost uncertainties," Computational Management Science, Springer, vol. 11(3), pages 267-283, July.
    20. Allard, Stéphane & Mima, Silvana & Debusschere, Vincent & Quoc, Tuan Tran & Criqui, Patrick & Hadjsaid, Nouredine, 2020. "European transmission grid expansion as a flexibility option in a scenario of large scale variable renewable energies integration," Energy Economics, Elsevier, vol. 87(C).

    More about this item

    Keywords

    energy system modeling; electricity grid models; linear optimization; congestion management; flow-based market coupling; n-1 security criterion;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:217278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.