IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2017-72.html
   My bibliography  Save this paper

Impact of German Energiewende on transmission lines in the Central European region

Author

Listed:
  • Jan Málek
  • Lukáš Recka
  • Karel Janda

Abstract

The impacts of renewable energy production and German nuclear phase-out on the electricity transmission systems in Central Europe is investigated with focus on the disparity between the growth of renewable production and the pace at which new electricity transmission lines have been built, especially in Germany. This imbalance endangers the system stability and reliability in the whole region. The assessment of these impacts on the transmission grid is analysed by the direct current load flow model ELMOD. Two scenarios for the year 2025 are evaluated from different perspectives. The distribution of loads in the grids is shown. Hourly patterns are analysed. Geographical decomposition is made, and problematic regions are identified. The high solar or wind power generation decrease the periods of very low transmission load and increase the mid- and high load on the transmission lines. High solar feed-in has less detrimental impacts on the transmission grid than high wind feed-in. High wind feed-in burdens the transmission lines in the north-south direction in Germany and water-pump-storage areas in Austria.

Suggested Citation

  • Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2017-72
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2017-11/72_2017_malek_recka_janda.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    2. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    3. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    4. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    5. Fischer, W. & Hake, J.-Fr. & Kuckshinrichs, W. & Schröder, T. & Venghaus, S., 2016. "German energy policy and the way to sustainability: Five controversial issues in the debate on the “Energiewende”," Energy, Elsevier, vol. 115(P3), pages 1580-1591.
    6. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    7. repec:aen:journl:ej37-si3-zerrahn is not listed on IDEAS
    8. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    9. Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2011. "The development of the German energy market until 2030--A critical survey of selected scenarios," Energy Policy, Elsevier, vol. 39(2), pages 812-825, February.
    10. Mulder, Machiel & Scholtens, Bert, 2016. "A plant-level analysis of the spill-over effects of the German Energiewende," Applied Energy, Elsevier, vol. 183(C), pages 1259-1271.
    11. Jonas Egerer & Clemens Gerbaulet & Richard Ihlenburg & Friedrich Kunz & Benjamin Reinhard & Christian von Hirschhausen & Alexander Weber & Jens Weibezahn, 2014. "Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets," Data Documentation 72, DIW Berlin, German Institute for Economic Research.
    12. Jan Prusa & Andrea Klimesova & Karel Janda, 2013. "Consumer Loss in Czech Photovoltaic Power Plants," CAMA Working Papers 2013-50, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    13. Weigt, Hannes & Jeske, Till & Leuthold, Florian & von Hirschhausen, Christian, 2010. ""Take the long way down": Integration of large-scale North Sea wind using HVDC transmission," Energy Policy, Elsevier, vol. 38(7), pages 3164-3173, July.
    14. Kunz, Friedrich & Zerrahn, Alexander, 2015. "Benefits of coordinating congestion management in electricity transmission networks: Theory and application to Germany," Utilities Policy, Elsevier, vol. 37(C), pages 34-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:enepol:v:132:y:2019:i:c:p:549-566 is not listed on IDEAS

    More about this item

    Keywords

    Energiewende; RES; transmission networks; congestion; loop flows; ELMOD; Central Europe.;

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2017-72. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Cama Admin). General contact details of provider: http://edirc.repec.org/data/asanuau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.