IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v116y2018icp198-209.html
   My bibliography  Save this article

Quo Vadis? (Un)scheduled electricity flows under market splitting and network extension in central Europe

Author

Listed:
  • Kunz, Friedrich

Abstract

The increasing role of intermittent renewable generation demands for an efficient spatial exchange of electricity. However, the technical characteristics of electricity transmission reduce the available cross-border capacity due to unscheduled flows in a zonal pricing framework. Using the detailed unit commitment and dispatch model stELMOD for the European system, we analyze the development of unscheduled flows under different market and network design scenarios for 2020. We apply ACER's flow definition to decompose commercial schedules and physical flows into unscheduled flows and its fractions, i.e. loop and unallocated flows. Our analysis reveals that unscheduled flows increase on average by 47% from 14.7 GW in 2013 to 21.7 GW in 2020 mainly driven by higher cross-border trade capacities and increasing renewable generation. These unscheduled flows, which affect adjacent countries through e.g. a reduction of tradeable cross-border capacity, can be effectively reduced through a delimitation of bidding zones or HVDC network expansion. Thus, even if a discussion of national impacts of national and European policies is inevitable, they can have substantial implications on adjacent regions through the interconnected electricity system. Therefore, a system-wide view should complement national perspectives to ensure an efficient system development with increasing shares of intermittent renewable generation.

Suggested Citation

  • Kunz, Friedrich, 2018. "Quo Vadis? (Un)scheduled electricity flows under market splitting and network extension in central Europe," Energy Policy, Elsevier, vol. 116(C), pages 198-209.
  • Handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:198-209
    DOI: 10.1016/j.enpol.2018.01.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518300612
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.01.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friedrich Kunz and Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management: Evidence from Central Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    2. Mirko Schäfer & Bo Tranberg & Sabrina Hempel & Stefan Schramm & Martin Greiner, 2017. "Decompositions of injection patterns for nodal flow allocation in renewable electricity networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(8), pages 1-11, August.
    3. Kunz, Friedrich & Neuhoff, Karsten & Rosellón, Juan, 2016. "FTR allocations to ease transition to nodal pricing: An application to the German power system," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 60, pages 176-185.
    4. Jan Abrell & Friedrich Kunz, 2015. "Integrating Intermittent Renewable Wind Generation - A Stochastic Multi-Market Electricity Model for the European Electricity Market," Networks and Spatial Economics, Springer, vol. 15(1), pages 117-147, March.
    5. Joachim Bertsch & Simeon Hagspiel & Lisa Just, 2016. "Congestion management in power systems," Journal of Regulatory Economics, Springer, vol. 50(3), pages 290-327, December.
    6. Trepper, Katrin & Bucksteeg, Michael & Weber, Christoph, 2015. "Market splitting in Germany – New evidence from a three-stage numerical model of Europe," Energy Policy, Elsevier, vol. 87(C), pages 199-215.
    7. Singh, Antriksh & Frei, Thomas & Chokani, Ndaona & Abhari, Reza S., 2016. "Impact of unplanned power flows in interconnected transmission systems – Case study of Central Eastern European region," Energy Policy, Elsevier, vol. 91(C), pages 287-303.
    8. Ehrenmann, Andreas & Smeers, Yves, 2005. "Inefficiencies in European congestion management proposals," Utilities Policy, Elsevier, vol. 13(2), pages 135-152, June.
    9. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    10. Newbery, David & Strbac, Goran & Viehoff, Ivan, 2016. "The benefits of integrating European electricity markets," Energy Policy, Elsevier, vol. 94(C), pages 253-263.
    11. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    12. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Jonas Egerer & Clemens Gerbaulet & Richard Ihlenburg & Friedrich Kunz & Benjamin Reinhard & Christian von Hirschhausen & Alexander Weber & Jens Weibezahn, 2014. "Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets," Data Documentation 72, DIW Berlin, German Institute for Economic Research.
    14. Grimm, Veronika & Martin, Alexander & Weibelzahl, Martin & Zöttl, Gregor, 2016. "On the long run effects of market splitting: Why more price zones might decrease welfare," Energy Policy, Elsevier, vol. 94(C), pages 453-467.
    15. Friedrich Kunz & Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management," Discussion Papers of DIW Berlin 1551, DIW Berlin, German Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riepin, I. & Müsgens, F., 2019. "Seasonal Flexibility in the European Natural Gas Market," Cambridge Working Papers in Economics 1976, Faculty of Economics, University of Cambridge.
    2. Qu, Chunzi & Bang, Rasmus Noss, 2024. "European Grid Development Modeling and Analysis: Established Frameworks, Research Trends, and Future Opportunities," Discussion Papers 2024/11, Norwegian School of Economics, Department of Business and Management Science.
    3. Abadie, Luis María & Chamorro, José Manuel, 2021. "Evaluation of a cross-border electricity interconnection: The case of Spain-France," Energy, Elsevier, vol. 233(C).
    4. Croonenbroeck, Carsten & Palm, Marcel, 2020. "A spatio-temporal Durbin fixed effects IV-Model for ENTSO-E electricity flows analysis," Renewable Energy, Elsevier, vol. 148(C), pages 205-213.
    5. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    2. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    3. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Egerer, Jonas & Weibezahn, Jens & Hermann, Hauke, 2016. "Two price zones for the German electricity market — Market implications and distributional effects," Energy Economics, Elsevier, vol. 59(C), pages 365-381.
    5. Lang, Lukas Maximilian & Dallinger, Bettina & Lettner, Georg, 2020. "The meaning of flow-based market coupling on redispatch measures in Austria," Energy Policy, Elsevier, vol. 136(C).
    6. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    7. Friedrich Kunz & Alexander Zerrahn, 2016. "Coordinating Cross-Country Congestion Management: Evidence from Central Europe," The Energy Journal, , vol. 37(3_suppl), pages 81-100, December.
    8. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    9. Fraunholz, Christoph & Hladik, Dirk & Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2021. "On the long-term efficiency of market splitting in Germany," Energy Policy, Elsevier, vol. 149(C).
    10. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    11. Kemfert, Claudia & Kunz, Friedrich & Rosellón, Juan, 2016. "A welfare analysis of electricity transmission planning in Germany," Energy Policy, Elsevier, vol. 94(C), pages 446-452.
    12. Zepter, Jan Martin & Weibezahn, Jens, 2019. "Unit commitment under imperfect foresight – The impact of stochastic photovoltaic generation," Applied Energy, Elsevier, vol. 243(C), pages 336-349.
    13. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    14. Karel Janda & Jan Málek & Lukáš Rečka, 2017. "Vliv obnovitelných zdrojů na českou soustavu přenosu elektřiny [The Impact of Renewable Energy Sources on the Czech Electricity Transmission System]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(6), pages 728-750.
    15. Bucksteeg, Michael & Voswinkel, Simon & Blumberg, Gerald, 2023. "Improving flow-based market coupling by integrating redispatch potential - Evidence from a large-scale model," EconStor Preprints 270878, ZBW - Leibniz Information Centre for Economics.
    16. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    17. Obermüller, Frank, 2017. "Build Wind Capacities at Windy Locations? Assessment of System Optimal Wind Locations," EWI Working Papers 2017-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Karel Janda & Jan Malek & Lukas Recka, 2017. "The Influence of Renewable Energy Sources on the Czech Electricity Transmission System," Working Papers IES 2017/06, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2017.
    19. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    20. Felten, Björn & Osinski, Paul & Felling, Tim & Weber, Christoph, 2021. "The flow-based market coupling domain - Why we can't get it right," Utilities Policy, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:198-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.