IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225000271.html
   My bibliography  Save this article

The value of flexibility of commercial electric vehicle fleets in the redispatch of congested transmission grids

Author

Listed:
  • Golab, Antonia
  • Loschan, Christoph
  • Zwickl-Bernhard, Sebastian
  • Auer, Hans

Abstract

With the electrification of the transport sector, significant charging loads by the future commercial fleet are expected. The present work aims to give quantitative insight into how impactful the future charging loads of the battery-electric commercial fleet will be to the electricity system. We hereby focus on the day-ahead market and congestion management while applying the proposed modeling framework to the Austrian case with different shares of fleet electrification in 2040. The methodological framework encompasses the spatio-temporal modeling of charging loads as well as optimization models simulating the day-ahead market clearing and the implementation of redispatch measures. Results indicate increased costs for redispatch measures when the flexibility of the aggregated fleet is used in the cost-optimal dispatch. It is demonstrated that the flexibility of the charging processes can be effectively applied in congestion management and reduce redispatch costs by up to 35%, while optimal charging profiles are observed to vary depending on their geographic allocation.

Suggested Citation

  • Golab, Antonia & Loschan, Christoph & Zwickl-Bernhard, Sebastian & Auer, Hans, 2025. "The value of flexibility of commercial electric vehicle fleets in the redispatch of congested transmission grids," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225000271
    DOI: 10.1016/j.energy.2025.134385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Gaugl & Mark Sommer & Claudia Kettner & Udo Bachhiesl & Thomas Florian Klatzer & Lia Gruber & Michael Böheim & Kurt Kratena & Sonja Wogrin, 2023. "Integrated Power and Economic Analysis of Austria's Renewable Electricity Transformation," WIFO Working Papers 657, WIFO.
    2. Kemfert, Claudia & Kunz, Friedrich & Rosellón, Juan, 2016. "A welfare analysis of electricity transmission planning in Germany," Energy Policy, Elsevier, vol. 94(C), pages 446-452.
    3. Kunz, Friedrich, 2018. "Quo Vadis? (Un)scheduled electricity flows under market splitting and network extension in central Europe," Energy Policy, Elsevier, vol. 116(C), pages 198-209.
    4. Trepper, Katrin & Bucksteeg, Michael & Weber, Christoph, 2015. "Market splitting in Germany – New evidence from a three-stage numerical model of Europe," Energy Policy, Elsevier, vol. 87(C), pages 199-215.
    5. Karel Janda & Jan Malek & Lukas Recka, 2017. "The Influence of Renewable Energy Sources on the Czech Electricity Transmission System," Working Papers IES 2017/06, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2017.
    6. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    7. Noll, Bessie & del Val, Santiago & Schmidt, Tobias S. & Steffen, Bjarne, 2022. "Analyzing the competitiveness of low-carbon drive-technologies in road-freight: A total cost of ownership analysis in Europe," Applied Energy, Elsevier, vol. 306(PB).
    8. Shoman, Wasim & Yeh, Sonia & Sprei, Frances & Plötz, Patrick & Speth, Daniel, 2023. "Public charging requirements for battery electric long-haul trucks in Europe: A trip chain approach," Working Papers "Sustainability and Innovation" S01/2023, Fraunhofer Institute for Systems and Innovation Research (ISI).
    9. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    10. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    11. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    12. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2024. "Electrolysis as a flexibility resource on energy islands: The case of the North Sea," Energy Policy, Elsevier, vol. 185(C).
    13. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    14. Brennan Borlaug & Matteo Muratori & Madeline Gilleran & David Woody & William Muston & Thomas Canada & Andrew Ingram & Hal Gresham & Charlie McQueen, 2021. "Heavy-duty truck electrification and the impacts of depot charging on electricity distribution systems," Nature Energy, Nature, vol. 6(6), pages 673-682, June.
    15. Wolf, André & Wenzel, Lars, 2016. "Regional diversity in the costs of electricity outages: Results for German counties," Utilities Policy, Elsevier, vol. 43(PB), pages 195-205.
    16. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    17. Schroeder, Andreas & Oei, Pao-Yu & Sander, Aram & Hankel, Lisa & Laurisch, Lilian Charlotte, 2013. "The integration of renewable energies into the German transmission grid—A scenario comparison," Energy Policy, Elsevier, vol. 61(C), pages 140-150.
    18. Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
    19. Hartvigsson, Elias & Taljegard, Maria & Odenberger, Mikael & Chen, Peiyuan, 2022. "A large-scale high-resolution geographic analysis of impacts of electric vehicle charging on low-voltage grids," Energy, Elsevier, vol. 261(PA).
    20. Manzolli, Jônatas Augusto & Trovão, João Pedro F. & Henggeler Antunes, Carlos, 2022. "Electric bus coordinated charging strategy considering V2G and battery degradation," Energy, Elsevier, vol. 254(PA).
    21. Robert Gaugl & Mark Sommer & Claudia Kettner & Udo Bachhiesl & Thomas Klatzer & Lia Gruber & Michael Böheim & Kurt Kratena & Sonja Wogrin, 2023. "Integrated Power and Economic Analysis of Austria’s Renewable Electricity Transformation," Energies, MDPI, vol. 16(5), pages 1-19, February.
    22. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    23. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    24. Burgholzer, Bettina & Auer, Hans, 2016. "Cost/benefit analysis of transmission grid expansion to enable further integration of renewable electricity generation in Austria," Renewable Energy, Elsevier, vol. 97(C), pages 189-196.
    25. Crozier, Constance & Morstyn, Thomas & McCulloch, Malcolm, 2020. "The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems," Applied Energy, Elsevier, vol. 268(C).
    26. Staudt, Philipp & Schmidt, Marc & Gärttner, Johannes & Weinhardt, Christof, 2018. "A decentralized approach towards resolving transmission grid congestion in Germany using vehicle-to-grid technology," Applied Energy, Elsevier, vol. 230(C), pages 1435-1446.
    27. Scherrer, Aline & Helferich, Marvin & Speth, Daniel & Link, Steffen, 2024. "Requirements of German logistics companies for charging battery-electric trucks: Results of a combined survey and interview study," Working Papers "Sustainability and Innovation" S03/2024, Fraunhofer Institute for Systems and Innovation Research (ISI).
    28. vom Scheidt, Frederik & Qu, Jingyi & Staudt, Philipp & Mallapragada, Dharik S. & Weinhardt, Christof, 2022. "Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals," Energy Policy, Elsevier, vol. 161(C).
    29. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    30. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    31. Liu, Wen Hui & Ho, Wai Shin & Lee, Ming Yang & Hashim, Haslenda & Lim, Jeng Shiun & Klemeš, Jiří J. & Mah, Angel Xin Yee, 2019. "Development and optimization of an integrated energy network with centralized and decentralized energy systems using mathematical modelling approach," Energy, Elsevier, vol. 183(C), pages 617-629.
    32. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2021. "Electric light commercial vehicles for a cleaner urban goods distribution. Are they cost competitive?," Research in Transportation Economics, Elsevier, vol. 85(C).
    33. Tharsis Teoh, 2022. "Electric vehicle charging strategies for Urban freight transport: concept and typology," Transport Reviews, Taylor & Francis Journals, vol. 42(2), pages 157-180, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Matczak & Andrzej S. Grzelakowski, 2025. "Impact of EU Decarbonization Policy on Polish International Road Freight Competitiveness," Energies, MDPI, vol. 18(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navon, Aviad & Kulbekov, Pavel & Dolev, Shahar & Yehuda, Gil & Levron, Yoash, 2020. "Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations," Energy Policy, Elsevier, vol. 140(C).
    2. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Environmental Impacts of Redispatching in Decarbonizing Electricity Systems: A Spanish Case Study," Working Papers 1-2023, Copenhagen Business School, Department of Economics.
    3. Lüth, Alexandra & Keles, Dogan, 2024. "Risks, strategies, and benefits of offshore energy hubs: A literature-based survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    4. Abadie, Luis María & Chamorro, José Manuel, 2021. "Evaluation of a cross-border electricity interconnection: The case of Spain-France," Energy, Elsevier, vol. 233(C).
    5. Croonenbroeck, Carsten & Palm, Marcel, 2020. "A spatio-temporal Durbin fixed effects IV-Model for ENTSO-E electricity flows analysis," Renewable Energy, Elsevier, vol. 148(C), pages 205-213.
    6. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Carbon emissions impacts of operational network constraints: The case of Spain during the Covid-19 crisis," Energy Economics, Elsevier, vol. 128(C).
    7. Eicke, Anselm & Schittekatte, Tim, 2022. "Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate," Energy Policy, Elsevier, vol. 170(C).
    8. Saez, Yago & Mochon, Asuncion & Corona, Luis & Isasi, Pedro, 2019. "Integration in the European electricity market: A machine learning-based convergence analysis for the Central Western Europe region," Energy Policy, Elsevier, vol. 132(C), pages 549-566.
    9. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2024. "Electrolysis as a flexibility resource on energy islands: The case of the North Sea," Energy Policy, Elsevier, vol. 185(C).
    10. Levieux, Luis Ignacio & Ocampo-Martinez, Carlos & Inthamoussou, Fernando A. & De Battista, Hernán, 2021. "Predictive management approach for the coordination of wind and water-based power supplies," Energy, Elsevier, vol. 219(C).
    11. Lang, Lukas Maximilian & Dallinger, Bettina & Lettner, Georg, 2020. "The meaning of flow-based market coupling on redispatch measures in Austria," Energy Policy, Elsevier, vol. 136(C).
    12. Zenón, Eric & Rosellón, Juan, 2017. "Optimal transmission planning under the Mexican new electricity market," Energy Policy, Elsevier, vol. 104(C), pages 349-360.
    13. Marco Sebastian Breder & Felix Meurer & Michael Bucksteeg & Christoph Weber, 2022. "Spatial Incentives for Power-to-hydrogen through Market Splitting," EWL Working Papers 2203, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Jul 2022.
    14. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    15. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    17. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    18. Juan Luis Martín-Ortega & Javier Chornet & Ioannis Sebos & Sander Akkermans & María José López Blanco, 2024. "Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 16(10), pages 1-35, May.
    19. Deutsch, Richard & Kienzl, Norbert & Krammer, Gernot & Stocker, Hugo & Strasser, Christoph, 2024. "Carbonized wood as a blast furnace pulverized coal substitute: A Techno-economic assessment," Energy, Elsevier, vol. 313(C).
    20. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225000271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.