IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v170y2022ics0301421522004396.html
   My bibliography  Save this article

Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate

Author

Listed:
  • Eicke, Anselm
  • Schittekatte, Tim

Abstract

Contrary to liberalized U.S. electricity markets that apply nodal pricing, European power markets rely on uniform pricing within bidding zones. Europe's zonal pricing model is challenged by an increasing mismatch between network and generation expansion within bidding zones, as well as the complexity of adequately redefining the existing bidding zone configuration. A potential solution is to transition to nodal pricing. The academic literature provides strong evidence of significant cost savings from such a transition. The question is: Why has nodal pricing persistently been discarded in Europe? It cannot be denied that implementing nodal pricing would require significant changes to the European market design. However, the debate in Europe has mostly focused on perceived flaws of the concept of nodal pricing. In this paper, we identify the main arguments against the concept of nodal pricing brought forward by European stakeholders. We group the arguments into the six categories: susceptibility to market power, barriers to unlock flexibility, market liquidity concerns, increased investment risks, unmanageable complexity, and political undesirability of locational price differentiation. Our contribution is to critically assess each of the arguments. We demonstrate that they do not explain, nor justify, the opposition to nodal pricing.

Suggested Citation

  • Eicke, Anselm & Schittekatte, Tim, 2022. "Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate," Energy Policy, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:enepol:v:170:y:2022:i:c:s0301421522004396
    DOI: 10.1016/j.enpol.2022.113220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522004396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaves-Ávila, José Pablo & van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2014. "The interplay between imbalance pricing mechanisms and network congestions – Analysis of the German electricity market," Utilities Policy, Elsevier, vol. 28(C), pages 52-61.
    2. Richstein, Jörn C. & Lorenz, Casimir & Neuhoff, Karsten, 2020. "An auction story: How simple bids struggle with uncertainty," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 89, pages 1-1.
    3. Ignacio Herrero & Pablo Rodilla & Carlos Batlle, 2020. "Evolving Bidding Formats and Pricing Schemes in USA and Europe Day-Ahead Electricity Markets," Energies, MDPI, vol. 13(19), pages 1-21, September.
    4. David P. Brown & Jay Zarnikau & Chi-Keung Woo, 2020. "Does locational marginal pricing impact generation investment location decisions? An analysis of Texas’s wholesale electricity market," Journal of Regulatory Economics, Springer, vol. 58(2), pages 99-140, December.
    5. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    6. Glachant, Jean-Michel & Pignon, Virginie, 2005. "Nordic congestion's arrangement as a model for Europe? Physical constraints vs. economic incentives," Utilities Policy, Elsevier, vol. 13(2), pages 153-162, June.
    7. Spodniak, Petr & Collan, Mikael, 2018. "Forward risk premia in long-term transmission rights: The case of electricity price area differentials (EPAD) in the Nordic electricity market," Utilities Policy, Elsevier, vol. 50(C), pages 194-206.
    8. Kunz, Friedrich & Neuhoff, Karsten & Rosellón, Juan, 2016. "FTR allocations to ease transition to nodal pricing: An application to the German power system," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 60, pages 176-185.
    9. VAN VYVE, Mathieu, 2011. "Linear prices for non-convex electricity markets: models and algorithms," LIDAM Discussion Papers CORE 2011050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    11. Newbery, David, 2016. "Missing money and missing markets: Reliability, capacity auctions and interconnectors," Energy Policy, Elsevier, vol. 94(C), pages 401-410.
    12. Gorman, Will & Mills, Andrew & Wiser, Ryan, 2019. "Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy," Energy Policy, Elsevier, vol. 135(C).
    13. Eicke, Anselm & Khanna, Tarun & Hirth, Lion, 2020. "Locational investment signals - How to steer the siting of new generation capacity in power systems?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 41(6), pages 281-304.
    14. Frank A. Wolak, 2011. "Measuring the Benefits of Greater Spatial Granularity in Short-Term Pricing in Wholesale Electricity Markets," American Economic Review, American Economic Association, vol. 101(3), pages 247-252, May.
    15. Peter Cramton, 2017. "Electricity market design," Oxford Review of Economic Policy, Oxford University Press, vol. 33(4), pages 589-612.
    16. Meeus, Leonardo & Purchala, Konrad & Belmans, Ronnie, 2005. "Development of the Internal Electricity Market in Europe," The Electricity Journal, Elsevier, vol. 18(6), pages 25-35, July.
    17. Schmidt, Lukas & Zinke, Jonas, 2020. "One price fits all? Wind power expansion under uniform and nodal pricing in Germany," EWI Working Papers 2020-6, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    18. Hirth, Lion & Schlecht, Ingmar, 2020. "Market-Based Redispatch in Zonal Electricity Markets: The Preconditions for and Consequence of Inc-Dec Gaming," EconStor Preprints 194292, ZBW - Leibniz Information Centre for Economics, revised 2020.
    19. Herrero, Ignacio & Rodilla, Pablo & Batlle, Carlos, 2015. "Electricity market-clearing prices and investment incentives: The role of pricing rules," Energy Economics, Elsevier, vol. 47(C), pages 42-51.
    20. Ambrosius, Mirjam & Egerer, Jonas & Grimm, Veronika & van der Weijde, Adriaan H., 2022. "Risk aversion in multilevel electricity market models with different congestion pricing regimes," Energy Economics, Elsevier, vol. 105(C).
    21. Meeus, Leonardo & Verhaegen, Karolien & Belmans, Ronnie, 2009. "Block order restrictions in combinatorial electric energy auctions," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1202-1206, August.
    22. Ignacio Herrero, Pablo Rodilla, and Carlos Batlle, 2018. "Enhancing Intraday Price Signals in U.S. ISO Markets for a Better Integration of Variable Energy Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    23. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    24. J. Zarnikau & C. Woo & R. Baldick, 2014. "Did the introduction of a nodal market structure impact wholesale electricity prices in the Texas (ERCOT) market?," Journal of Regulatory Economics, Springer, vol. 45(2), pages 194-208, April.
    25. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    26. HAN, Jinil & PAPAVASILIOU, Anthony, 2015. "Congestion management through topologial corrections: a case study of Central Western Europe," LIDAM Reprints CORE 2688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    27. Leonardo Meeus & with Tim Schittekatte, 2020. "Who gets the rights to trade across borders?," Chapters, in: The Evolution of Electricity Markets in Europe, chapter 2, pages 25-47, Edward Elgar Publishing.
    28. vom Scheidt, Frederik & Qu, Jingyi & Staudt, Philipp & Mallapragada, Dharik S. & Weinhardt, Christof, 2022. "Integrating hydrogen in single-price electricity systems: The effects of spatial economic signals," Energy Policy, Elsevier, vol. 161(C).
    29. Ocker, Fabian & Jaenisch, Vincent, 2020. "The way towards European electricity intraday auctions – Status quo and future developments," Energy Policy, Elsevier, vol. 145(C).
    30. Jeff Opgrand, Paul V. Preckel, Douglas J. Gotham, and Andrew L. Liu, 2022. "Price Formation in Auctions for Financial Transmission Rights," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    31. Paul L. Joskow, 2008. "Lessons Learned from Electricity Market Liberalization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 9-42.
    32. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    33. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    34. Christoph Graf & Federico Quaglia & Frank A. Wolak, 2020. "Simplified Electricity Market Models with Significant Intermittent Renewable Capacity: Evidence from Italy," NBER Working Papers 27262, National Bureau of Economic Research, Inc.
    35. Mar Reguant, 2014. "Complementary Bidding Mechanisms and Startup Costs in Electricity Markets," Review of Economic Studies, Oxford University Press, vol. 81(4), pages 1708-1742.
    36. Eicke, Anselm, 2022. "Where should generators be built in a zonal electricity market? A numerical analysis of administratively determined investment signals," EconStor Preprints 261346, ZBW - Leibniz Information Centre for Economics.
    37. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    38. Han, Jinil & Papavasiliou, Anthony, 2015. "Congestion management through topological corrections: A case study of Central Western Europe," Energy Policy, Elsevier, vol. 86(C), pages 470-482.
    39. Navid Azizan & Yu Su & Krishnamurthy Dvijotham & Adam Wierman, 2020. "Optimal Pricing in Markets with Nonconvex Costs," Operations Research, INFORMS, vol. 68(2), pages 480-496, March.
    40. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    41. Schittekatte, Tim & Pototschnig, Alberto & Meeus, Leonardo & Jamasb, Tooraj & Llorca, Manuel, 2021. "Making the TEN-E regulation compatible with the Green Deal: Eligibility, selection, and cost allocation for PCIs," Energy Policy, Elsevier, vol. 156(C).
    42. Hesamzadeh, Mohammad Reza & Biggar, Darryl R., 2021. "Generalized FTRs for hedging inter-nodal pricing risk," Energy Economics, Elsevier, vol. 94(C).
    43. Hung-po Chao, 2019. "Incentives for efficient pricing mechanism in markets with non-convexities," Journal of Regulatory Economics, Springer, vol. 56(1), pages 33-58, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaves, J. P. & Cossent, R. & Gómez San Román, T. & Linares, P. & Rivier, M., 2023. "An assessment of the European electricity market reform options and a pragmatic proposal," Cambridge Working Papers in Economics 2325, Faculty of Economics, University of Cambridge.
    2. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    3. Luigi Viola & Saeed Nordin & Daniel Dotta & Mohammad Reza Hesamzadeh & Ross Baldick & Damian Flynn, 2023. "Ancillary Services in Power System Transition Toward a 100% Non-Fossil Future: Market Design Challenges in the United States and Europe," Papers 2311.02090, arXiv.org.
    4. Neuhoff, Karsten & Richstein, Jörn C. & Kröger, Mats, 2023. "Reacting to changing paradigms: How and why to reform electricity markets," Energy Policy, Elsevier, vol. 180(C).
    5. Lundin, Erik, 2022. "Geographic price granularity and investments in wind power: Evidence from a Swedish electricity market splitting reform," Energy Economics, Elsevier, vol. 113(C).
    6. Geoffrey Mabea, 2023. "Simulating Generalised Locational Marginal Pricing for Power Markets in East Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 450-460, September.
    7. Sirin, Selahattin Murat & Uz, Dilek & Sevindik, Irem, 2022. "How do variable renewable energy technologies affect firm-level day-ahead output decisions: Evidence from the Turkish wholesale electricity market," Energy Economics, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neuhoff, Karsten & Richstein, Jörn C. & Kröger, Mats, 2023. "Reacting to changing paradigms: How and why to reform electricity markets," Energy Policy, Elsevier, vol. 180(C).
    2. Holmberg, Pär & Tangerås, Thomas & Ahlqvist, Victor, 2018. "Central- versus Self-Dispatch in Electricity Markets," Working Paper Series 1257, Research Institute of Industrial Economics, revised 27 Mar 2019.
    3. Lundin, Erik, 2022. "Geographic price granularity and investments in wind power: Evidence from a Swedish electricity market splitting reform," Energy Economics, Elsevier, vol. 113(C).
    4. Pollitt, M. G., 2023. "Locational Marginal Prices (LMPs) for Electricity in Europe? The Untold Story," Cambridge Working Papers in Economics 2352, Faculty of Economics, University of Cambridge.
    5. Martin Bichler & Hans Ulrich Buhl & Johannes Knörr & Felipe Maldonado & Paul Schott & Stefan Waldherr & Martin Weibelzahl, 2022. "Electricity Markets in a Time of Change: A Call to Arms for Business Research," Schmalenbach Journal of Business Research, Springer, vol. 74(1), pages 77-102, March.
    6. Liu, Shuangquan & Yang, Qiang & Cai, Huaxiang & Yan, Minghui & Zhang, Maolin & Wu, Dianning & Xie, Mengfei, 2019. "Market reform of Yunnan electricity in southwestern China: Practice, challenges and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    8. Karsten Neuhoff & Jörn C. Richstein & Mats Kröger, 2023. "Reacting to Changing Paradigms: How and Why to Reform Electricity Markets," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 127, number pbk189, Enero-Abr.
    9. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    11. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    12. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    13. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Environmental Impacts of Redispatching in Decarbonizing Electricity Systems: A Spanish Case Study," Working Papers 1-2023, Copenhagen Business School, Department of Economics.
    14. Jonas Egerer & Jens Weibezahn & Hauke Hermann, 2015. "Two Price Zones for the German Electricity Market: Market Implications and Distributional Effects," Discussion Papers of DIW Berlin 1451, DIW Berlin, German Institute for Economic Research.
    15. Saez, Yago & Mochon, Asuncion & Corona, Luis & Isasi, Pedro, 2019. "Integration in the European electricity market: A machine learning-based convergence analysis for the Central Western Europe region," Energy Policy, Elsevier, vol. 132(C), pages 549-566.
    16. Triolo, Ryan C. & Wolak, Frank A., 2022. "Quantifying the benefits of a nodal market design in the Texas electricity market," Energy Economics, Elsevier, vol. 112(C).
    17. Navon, Aviad & Kulbekov, Pavel & Dolev, Shahar & Yehuda, Gil & Levron, Yoash, 2020. "Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations," Energy Policy, Elsevier, vol. 140(C).
    18. Sirin, Selahattin Murat & Uz, Dilek & Sevindik, Irem, 2022. "How do variable renewable energy technologies affect firm-level day-ahead output decisions: Evidence from the Turkish wholesale electricity market," Energy Economics, Elsevier, vol. 112(C).
    19. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    20. Höckner, Jonas & Voswinkel, Simon & Weber, Christoph, 2020. "Market distortions in flexibility markets caused by renewable subsidies – The case for side payments," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:170:y:2022:i:c:s0301421522004396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.