IDEAS home Printed from https://ideas.repec.org/p/emc/wpaper/dte598.html
   My bibliography  Save this paper

Optimal Transmission Planning under the Mexican New Electricity Market

Author

Listed:
  • Juan Rosellón

    (Division of Economics, CIDE)

  • Eric Zenón

    (Centro del Cambio Global y la Sustentabilidad en el Sureste, CCGSS)

Abstract

This paper addresses electricity transmission planning under the new industry and institutional structure of the Mexican electricity market, which has engaged in a deep reform process after decades of a state-owned vertically-integrated non-competitive closed industry. Under this new structure, characterized by a nodal pricing system and an independent system operator (ISO), we analyze welfare-optimal network expansion with two modeling strategies. In a first model, we propose the use of an incentive price-cap mechanism to promote the expansion of Mexico networks. In a second model, we study centrally-planned grid expansion in Mexico by an ISO within a power-flow model. We carry out comparisons of these models which provide us with hints to evaluate the actual transmission planning process proposed by Mexican authorities (Prodesen). We obtain: 1) the Prodesen plan appears to be a convergent welfare optimal planning process, and 2) incentive regulation in Mexico could further help to implement such an optical process.

Suggested Citation

  • Juan Rosellón & Eric Zenón, 2016. "Optimal Transmission Planning under the Mexican New Electricity Market," Working papers DTE 598, CIDE, División de Economía.
  • Handle: RePEc:emc:wpaper:dte598
    as

    Download full text from publisher

    File URL: http://www.economiamexicana.cide.edu/RePEc/emc/pdf/DTE/DTE598.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ruiz, Erix & Rosellón, Juan, 2012. "Transmission investment in the Peruvian electricity market: Theory and applications," Energy Policy, Elsevier, vol. 47(C), pages 238-245.
    2. William Hogan & Juan Rosellón & Ingo Vogelsang, 2010. "Toward a combined merchant-regulatory mechanism for electricity transmission expansion," Journal of Regulatory Economics, Springer, vol. 38(2), pages 113-143, October.
    3. Schroeder, Andreas & Oei, Pao-Yu & Sander, Aram & Hankel, Lisa & Laurisch, Lilian Charlotte, 2013. "The integration of renewable energies into the German transmission grid—A scenario comparison," Energy Policy, Elsevier, vol. 61(C), pages 140-150.
    4. Claudia Kemfert & Friedrich Kunz & Juan Rosellón, 2015. "A Welfare Analysis of the Electricity Transmission Regulatory Regime in Germany," Discussion Papers of DIW Berlin 1492, DIW Berlin, German Institute for Economic Research.
    5. Anne Neumann & Juan Rosellón & Hannes Weigt, 2015. "Removing Cross-Border Capacity Bottlenecks in the European Natural Gas Market—A Proposed Merchant-Regulatory Mechanism," Networks and Spatial Economics, Springer, vol. 15(1), pages 149-181, March.
    6. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 119-148.
    7. Kemfert, Claudia & Kunz, Friedrich & Rosellón, Juan, 2016. "A welfare analysis of electricity transmission planning in Germany," Energy Policy, Elsevier, vol. 94(C), pages 446-452.
    8. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    9. Trepper, Katrin & Bucksteeg, Michael & Weber, Christoph, 2015. "Market splitting in Germany – New evidence from a three-stage numerical model of Europe," Energy Policy, Elsevier, vol. 87(C), pages 199-215.
    10. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    11. Sauma, Enzo E. & Oren, Shmuel S., 2009. "Do generation firms in restructured electricity markets have incentives to support social-welfare-improving transmission investments?," Energy Economics, Elsevier, vol. 31(5), pages 676-689, September.
    12. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 358-387, November.
    13. van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F., 2012. "The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty," Energy Economics, Elsevier, vol. 34(6), pages 2089-2101.
    14. Thomas-Olivier Leautier, 2000. "Regulation of an Electric Power Transmission Company," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 61-92.
    15. Espinosa, Rubi & Rosellon, Juan, 2017. "Optimal Transmission Tariff Regulation for the Southern Baja-Californian Electricity Network System," MPRA Paper 98092, University Library of Munich, Germany.
    16. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    17. Thomas-Olivier Léautier & Véronique Thelen, 2009. "Optimal expansion of the power transmission grid: why not?," Journal of Regulatory Economics, Springer, vol. 36(2), pages 127-153, October.
    18. Makoto Tanaka, 2007. "Extended Price Cap Mechanism for Efficient Transmission Expansion under Nodal Pricing," Networks and Spatial Economics, Springer, vol. 7(3), pages 257-275, September.
    19. Vogelsang, Ingo, 2001. "Price Regulation for Independent Transmission Companies," Journal of Regulatory Economics, Springer, vol. 20(2), pages 141-165, September.
    20. Schill, Wolf-Peter & Egerer, Jonas & Rosellón, Juan, 2015. "Testing Regulatory Regimes for Power Transmission Expansion with Fluctuating Demand and Wind Generation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 47(1), pages 1-28.
    21. Thomas-Olivier Léautier & Véronique Thelen, 2009. "Optimal expansion of the power transmission grid: why not?," Post-Print hal-02402972, HAL.
    22. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 261-290, November.
    23. Tarjei Kristiansen & Juan Rosellón, 2006. "A Merchant Mechanism for Electricity Transmission Expansion," Journal of Regulatory Economics, Springer, vol. 29(2), pages 167-193, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ingo Vogelsang, 2018. "Can Simple Regulatory Mechanisms Realistically be used for Electricity Transmission Investment? The Case of H-R-G-V," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolf-Peter Schill & Jonas Egerer & Juan Rosellón, 2015. "Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation," Journal of Regulatory Economics, Springer, vol. 47(1), pages 1-28, February.
    2. Kemfert, Claudia & Kunz, Friedrich & Rosellón, Juan, 2016. "A welfare analysis of electricity transmission planning in Germany," Energy Policy, Elsevier, vol. 94(C), pages 446-452.
    3. Claudia Kemfert & Friedrich Kunz & Juan Rosellón, 2015. "A Welfare Analysis of the Electricity Transmission Regulatory Regime in Germany," Discussion Papers of DIW Berlin 1492, DIW Berlin, German Institute for Economic Research.
    4. Espinosa, Rubi & Rosellon, Juan, 2017. "Optimal Transmission Tariff Regulation for the Southern Baja-Californian Electricity Network System," MPRA Paper 98092, University Library of Munich, Germany.
    5. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    6. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    7. Rosellón, Juan & Myslíková, Zdenka & Zenón, Eric, 2011. "Incentives for transmission investment in the PJM electricity market: FTRs or regulation (or both?)," Utilities Policy, Elsevier, vol. 19(1), pages 3-13, January.
    8. Stephen Littlechild, 2012. "Merchant and regulated transmission: theory, evidence and policy," Journal of Regulatory Economics, Springer, vol. 42(3), pages 308-335, December.
    9. Chao, Hung-po & Wilson, Robert, 2020. "Coordination of electricity transmission and generation investments," Energy Economics, Elsevier, vol. 86(C).
    10. Felix Höffler & Achim Wambach, 2013. "Investment coordination in network industries: the case of electricity grid and electricity generation," Journal of Regulatory Economics, Springer, vol. 44(3), pages 287-307, December.
    11. Biggar, Darryl R. & Hesamzadeh, Mohammad Reza, 2022. "An integrated theory of dispatch and hedging in wholesale electric power markets," Energy Economics, Elsevier, vol. 112(C).
    12. Leuthold, Florian & Jeske, Till & Weigt, Hannes & von Hirschhausen, Christian, 2009. "When the Wind Blows Over Europe: A Simulation Analysis and the Impact of Grid Extensions," MPRA Paper 65655, University Library of Munich, Germany.
    13. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    14. Dagobert Brito & Juan Rosellón, 2011. "Lumpy Investment in Regulated Natural Gas Pipelines: An Application of the Theory of the Second Best," Networks and Spatial Economics, Springer, vol. 11(3), pages 533-553, September.
    15. Juan Rosellón, Ingo Vogelsang, and Hannes Weigt, 2012. "Long-run Cost Functions for Electricity Transmission," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    16. Mohammad Reza Hesamzadeh & Juan Rosellón & Steven A. Gabriel, 2015. "A Profit-Maximizing Approach for Transmission Expansion Planning Using a Revenue-Cap Incentive Mechanism," Discussion Papers of DIW Berlin 1470, DIW Berlin, German Institute for Economic Research.
    17. Ruderer, D., 2012. "The Impact of Transmission Pricing in Network Industries," Cambridge Working Papers in Economics 1230, Faculty of Economics, University of Cambridge.
    18. Ross Baldick, 2018. "Incentive properties of coincident peak pricing," Journal of Regulatory Economics, Springer, vol. 54(2), pages 165-194, October.
    19. Siddiqui, Afzal S. & Tanaka, Makoto & Chen, Yihsu, 2019. "Sustainable transmission planning in imperfectly competitive electricity industries: Balancing economic and environmental outcomes," European Journal of Operational Research, Elsevier, vol. 275(1), pages 208-223.
    20. Ingo Vogelsang, 2018. "Can Simple Regulatory Mechanisms Realistically be used for Electricity Transmission Investment? The Case of H-R-G-V," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).

    More about this item

    Keywords

    Electricity market reform; vertical and horizontal disintegration; transmission planning; nodal prices; Mexico.;
    All these keywords.

    JEL classification:

    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:emc:wpaper:dte598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alfonso Miranda (email available below). General contact details of provider: https://edirc.repec.org/data/cideemx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.