IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1492.html
   My bibliography  Save this paper

A Welfare Analysis of the Electricity Transmission Regulatory Regime in Germany

Author

Listed:
  • Claudia Kemfert
  • Friedrich Kunz
  • Juan Rosellón

Abstract

We analyze the current regulatory regime for electricity transmission in Germany, which combines network planning with both cost-plus and revenue-cap regulations. After reviewing international experiences on transmission investment, we first make a qualitative assessment of the overall German regime. The German TSOs have in general incentives to overinvest and inefficiently inflate costs. We further develop two models to analyze the transmission planning process. In the first model there is no trade-off between transmission expansion and generation dispatch. This is a modeling set-up similar to the one actually used in the German transmission planning (Netzentwicklungsplan). A second model alternatively allows for such a trade-off, and thus represents an optimal way of transmission network planning. Simulations with the two models are carried out and compared so as to illustrate the amount of excessive transmission capacity investment and welfare losses associated with the current regime.

Suggested Citation

  • Claudia Kemfert & Friedrich Kunz & Juan Rosellón, 2015. "A Welfare Analysis of the Electricity Transmission Regulatory Regime in Germany," Discussion Papers of DIW Berlin 1492, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1492
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.510518.de/dp1492.pdf
    Download Restriction: Published in: Energy Policy 94 (2016), S. 446-452
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 119-148.
    2. Thomas-Olivier Leautier, 2000. "Regulation of an Electric Power Transmission Company," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 61-92.
    3. repec:aen:journl:eeep3_2_03egerer is not listed on IDEAS
    4. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    5. Thomas-Olivier Léautier & Véronique Thelen, 2009. "Optimal expansion of the power transmission grid: why not?," Journal of Regulatory Economics, Springer, vol. 36(2), pages 127-153, October.
    6. Dagobert Brito & Juan Rosellón, 2011. "Lumpy Investment in Regulated Natural Gas Pipelines: An Application of the Theory of the Second Best," Networks and Spatial Economics, Springer, vol. 11(3), pages 533-553, September.
    7. Makoto Tanaka, 2007. "Extended Price Cap Mechanism for Efficient Transmission Expansion under Nodal Pricing," Networks and Spatial Economics, Springer, vol. 7(3), pages 257-275, September.
    8. Kunz, Friedrich & Neuhoff, Karsten & Rosellón, Juan, 2016. "FTR allocations to ease transition to nodal pricing: An application to the German power system," Energy Economics, Elsevier, vol. 60(C), pages 176-185.
    9. Vogelsang, Ingo, 2001. "Price Regulation for Independent Transmission Companies," Journal of Regulatory Economics, Springer, vol. 20(2), pages 141-165, September.
    10. Crew, Michael A & Kleindorfer, Paul R, 1996. "Incentive Regulation in the United Kingdom and the United States: Some Lessons," Journal of Regulatory Economics, Springer, vol. 9(3), pages 211-225, May.
    11. Jonas Egerer & Clemens Gerbaulet & Richard Ihlenburg & Friedrich Kunz & Benjamin Reinhard & Christian von Hirschhausen & Alexander Weber & Jens Weibezahn, 2014. "Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets," Data Documentation 72, DIW Berlin, German Institute for Economic Research.
    12. Schill, Wolf-Peter & Egerer, Jonas & Rosellón, Juan, 2015. "Testing Regulatory Regimes for Power Transmission Expansion with Fluctuating Demand and Wind Generation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 47(1), pages 1-28.
    13. Jonas Egerer and Wolf-Peter Schill, 2014. "Power System Transformation toward Renewables: Investment Scenarios for Germany," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    14. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    15. Jörg Borrmann & Gert Brunekreeft, 2010. "The Effect of Monopoly Regulation on the Timing of Investment," Bremen Energy Working Papers 0001, Bremen Energy Research.
    16. Thomas-Olivier Léautier & Véronique Thelen, 2009. "Optimal expansion of the power transmission grid: why not?," Post-Print hal-02402972, HAL.
    17. Jamasb, T. & Pollitt, M., 2000. "Benchmarking and regulation: international electricity experience," Utilities Policy, Elsevier, vol. 9(3), pages 107-130, September.
    18. Tarjei Kristiansen & Juan Rosellón, 2006. "A Merchant Mechanism for Electricity Transmission Expansion," Journal of Regulatory Economics, Springer, vol. 29(2), pages 167-193, March.
    19. Weigt, Hannes & Jeske, Till & Leuthold, Florian & von Hirschhausen, Christian, 2010. ""Take the long way down": Integration of large-scale North Sea wind using HVDC transmission," Energy Policy, Elsevier, vol. 38(7), pages 3164-3173, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zenón, Eric & Rosellón, Juan, 2017. "Optimal transmission planning under the Mexican new electricity market," Energy Policy, Elsevier, vol. 104(C), pages 349-360.
    2. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors," Energies, MDPI, vol. 9(7), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zenón, Eric & Rosellón, Juan, 2017. "Optimal transmission planning under the Mexican new electricity market," Energy Policy, Elsevier, vol. 104(C), pages 349-360.
    2. Wolf-Peter Schill & Jonas Egerer & Juan Rosellón, 2015. "Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation," Journal of Regulatory Economics, Springer, vol. 47(1), pages 1-28, February.
    3. Espinosa, Rubi & Rosellon, Juan, 2017. "Optimal Transmission Tariff Regulation for the Southern Baja-Californian Electricity Network System," MPRA Paper 98092, University Library of Munich, Germany.
    4. Egerer, Jonas & Rosellón, Juan & Schill, Wolf-Peter, 2015. "Power System Transformation toward Renewables: An Evaluation of Regulatory Approaches for Network Expansion," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(4), pages 105-128.
    5. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    6. Kemfert, Claudia & Kunz, Friedrich & Rosellón, Juan, 2016. "A welfare analysis of electricity transmission planning in Germany," Energy Policy, Elsevier, vol. 94(C), pages 446-452.
    7. Mohammad Reza Hesamzadeh & Juan Rosellón & Steven A. Gabriel, 2015. "A Profit-Maximizing Approach for Transmission Expansion Planning Using a Revenue-Cap Incentive Mechanism," Discussion Papers of DIW Berlin 1470, DIW Berlin, German Institute for Economic Research.
    8. Ross Baldick, 2018. "Incentive properties of coincident peak pricing," Journal of Regulatory Economics, Springer, vol. 54(2), pages 165-194, October.
    9. Jonas Egerer, Clemens Gerbaulet, and Casimir Lorenz, 2016. "European Electricity Grid Infrastructure Expansion in a 2050 Context," The Energy Journal, International Association for Energy Economics, vol. 0(Sustainab).
    10. Wolf-Peter Schill & Juan Rosellón & Jonas Egerer, 2011. "Regulated Expansion of Electricity Transmission Networks: The Effects of Fluctuating Demand and Wind Generation," Discussion Papers of DIW Berlin 1109, DIW Berlin, German Institute for Economic Research.
    11. Anne Neumann & Juan Rosellón & Hannes Weigt, 2015. "Removing Cross-Border Capacity Bottlenecks in the European Natural Gas Market—A Proposed Merchant-Regulatory Mechanism," Networks and Spatial Economics, Springer, vol. 15(1), pages 149-181, March.
    12. Juan Rosellón, Ingo Vogelsang, and Hannes Weigt, 2012. "Long-run Cost Functions for Electricity Transmission," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Rosellón, Juan & Myslíková, Zdenka & Zenón, Eric, 2011. "Incentives for transmission investment in the PJM electricity market: FTRs or regulation (or both?)," Utilities Policy, Elsevier, vol. 19(1), pages 3-13, January.
    14. Stephen Littlechild, 2012. "Merchant and regulated transmission: theory, evidence and policy," Journal of Regulatory Economics, Springer, vol. 42(3), pages 308-335, December.
    15. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    16. Biggar, Darryl R. & Hesamzadeh, Mohammad Reza, 2022. "An integrated theory of dispatch and hedging in wholesale electric power markets," Energy Economics, Elsevier, vol. 112(C).
    17. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 119-148.
    18. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    19. Jan Málek & Lukáš Recka & Karel Janda, 2017. "Impact of German Energiewende on transmission lines in the Central European region," CAMA Working Papers 2017-72, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Wiese, Frauke & Schlecht, Ingmar & Bunke, Wolf-Dieter & Gerbaulet, Clemens & Hirth, Lion & Jahn, Martin & Kunz, Friedrich & Lorenz, Casimir & Mühlenpfordt, Jonathan & Reimann, Juliane & Schill, Wolf-P, 2019. "Open Power System Data – Frictionless data for electricity system modelling," Applied Energy, Elsevier, vol. 236(C), pages 401-409.

    More about this item

    Keywords

    Transmission planning; nodal prices; congestion management; electricity; Germany.;
    All these keywords.

    JEL classification:

    • L50 - Industrial Organization - - Regulation and Industrial Policy - - - General
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.