IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v04y2013isupp0ns201000781340006x.html
   My bibliography  Save this article

The Infrastructure Implications Of The Energy Transformation In Europe Until 2050 — Lessons From The Emf28 Modeling Exercise

Author

Listed:
  • FRANZISKA HOLZ

    (DIW Berlin (German Institute for Economic Research), Mohrenstrasse 58, 10117 Berlin, Germany)

  • CHRISTIAN VON HIRSCHHAUSEN

    (DIW Berlin (German Institute for Economic Research), Mohrenstrasse 58, 10117 Berlin, Germany;
    Workgroup for Economic and Infrastructure Policy, Berlin University of Technology, TU Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany)

Abstract

This paper summarizes the approaches to and the implications of bottom–up infrastructure modeling in the framework of the EMF28 model comparison "Europe 2050: The Effects of Technology Choices on EU Climate Policy". It includes models covering all the sectors currently under scrutiny by the European Infrastructure Priorities: Electricity, natural gas, and CO2. Results suggest that some infrastructure enhancement is required to achieve the decarbonization, and that the network development needs can be attained in a reasonable timeframe. In the electricity sector, additional cross-border interconnection is required, but generation and the development of low-cost renewables is a more challenging task. For natural gas, the falling total consumption could be satisfied by the current infrastructure in place, and even in a high-gas scenario the infrastructure implications remain manageable. Model results on the future role of Carbon Capture, Transport, and Sequestration (CCTS) vary, and suggest that most of the transportation infrastructure might be required in and around the North Sea.

Suggested Citation

  • Franziska Holz & Christian Von Hirschhausen, 2013. "The Infrastructure Implications Of The Energy Transformation In Europe Until 2050 — Lessons From The Emf28 Modeling Exercise," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-26.
  • Handle: RePEc:wsi:ccexxx:v:04:y:2013:i:supp0:n:s201000781340006x
    DOI: 10.1142/S201000781340006X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S201000781340006X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S201000781340006X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Abrell & Hannes Weigt, 2012. "Combining Energy Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 377-401, September.
    2. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    3. Jonas Egerer & Clemens Gerbaulet & Casimir Lorenz, 2013. "European Electricity Grid Infrastructure Expansion in a 2050 Context," Discussion Papers of DIW Berlin 1299, DIW Berlin, German Institute for Economic Research.
    4. A. Schröder & T. Traber & C. Kemfert, 2013. "Market Driven Power Plant Investment Perspectives In Europe: Climate Policy And Technology Scenarios Until 2050 In The Model Emelie-Esy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-22.
    5. Schmid, Eva & Knopf, Brigitte, 2015. "Quantifying the long-term economic benefits of European electricity system integration," Energy Policy, Elsevier, vol. 87(C), pages 260-269.
    6. Franziska Holz & Philipp M. Richter & Ruud Egging, 2013. "The Role of Natural Gas in a Low-Carbon Europe: Infrastructure and Regional Supply Security in the Global Gas Model," Discussion Papers of DIW Berlin 1273, DIW Berlin, German Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rioux, Bertrand & Galkin, Philipp & Murphy, Frederic & Feijoo, Felipe & Pierru, Axel & Malov, Artem & Li, Yan & Wu, Kang, 2019. "The economic impact of price controls on China's natural gas supply chain," Energy Economics, Elsevier, vol. 80(C), pages 394-410.
    2. Feijoo, Felipe & Iyer, Gokul C. & Avraam, Charalampos & Siddiqui, Sauleh A. & Clarke, Leon E. & Sankaranarayanan, Sriram & Binsted, Matthew T. & Patel, Pralit L. & Prates, Nathalia C. & Torres-Alfaro,, 2018. "The future of natural gas infrastructure development in the United states," Applied Energy, Elsevier, vol. 228(C), pages 149-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 973-987.
    2. Jan Abrell and Hannes Weigt, 2016. "Investments in a Combined Energy Network Model: Substitution between Natural Gas and Electricity?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    3. Christian von Hirschhausen, 2014. "The German Energiewend - An Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    4. Lukáš Rečka & Milan Ščasný, 2017. "Impacts of Reclassified Brown Coal Reserves on the Energy System and Deep Decarbonisation Target in the Czech Republic," Energies, MDPI, Open Access Journal, vol. 10(12), pages 1-27, November.
    5. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    6. Abrell, Jan & Chavaz, Léo & Weigt, Hannes, 2019. "Dealing with Supply Disruptions on the European Natural Gas Market: Infrastructure Investments or Coordinated Policies?," Working papers 2019/11, Faculty of Business and Economics - University of Basel.
    7. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    8. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    9. Rečka, L. & Ščasný, M., 2016. "Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050," Energy, Elsevier, vol. 108(C), pages 19-33.
    10. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    11. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    12. Iegor Riepin & Thomas Mobius & Felix Musgens, 2020. "Modelling uncertainty in coupled electricity and gas systems -- is it worth the effort?," Papers 2008.07221, arXiv.org, revised Sep 2020.
    13. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    14. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, Open Access Journal, vol. 11(5), pages 1-25, May.
    15. Mel Devine & James Gleeson & John Kinsella & David Ramsey, 2014. "A Rolling Optimisation Model of the UK Natural Gas Market," Networks and Spatial Economics, Springer, vol. 14(2), pages 209-244, June.
    16. Hörnlein, Lena, 2019. "The value of gas-fired power plants in markets with high shares of renewable energy," Energy Economics, Elsevier, vol. 81(C), pages 1078-1098.
    17. Thao Pham, 2016. "Energiewende and competition in Germany: Diagnosing market power in wholesale electricity market," Post-Print hal-02568253, HAL.
    18. Casimir Lorenz & Clemens Gerbaulet, 2017. "Wind Providing Balancing Reserves: An Application to the German Electricity System of 2025," Discussion Papers of DIW Berlin 1655, DIW Berlin, German Institute for Economic Research.
    19. Petitet, Marie & Perrot, Marie & Mathieu, Sébastien & Ernst, Damien & Phulpin, Yannick, 2019. "Impact of gate closure time on the efficiency of power systems balancing," Energy Policy, Elsevier, vol. 129(C), pages 562-573.
    20. Richstein, Jörn C. & Lorenz, Casimir & Neuhoff, Karsten, 2020. "An auction story: How simple bids struggle with uncertainty," Energy Economics, Elsevier, vol. 89(C).

    More about this item

    Keywords

    Infrastructure; electricity; natural gas; CO2; CCS; modeling;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:04:y:2013:i:supp0:n:s201000781340006x. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.