IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc14/100459.html
   My bibliography  Save this paper

Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare

Author

Listed:
  • Zerrahn, Alexander
  • Huppmann, Daniel

Abstract

Lack of transmission capacity hampers the efficient integration of the European electricity market, and thereby precludes reaping the full benefits of competition. We investigate to what extent the expansion of the transmission grid promotes competition, efficiency, and welfare. This work proposes a three-stage model for grid investment: a benevolent planner decides on network upgrades; she considers the welfare benefits of investment through a reduction of market power exertion by strategic generators. These firms anticipate their impact on the Independent System Operator and are able to exert market power, in particular when lines are congested. We illustrate the model on a simple three-node network. Results indicate that network expansion indeed provides a suitable way of enhancing welfare due to a reduction of market power potential.

Suggested Citation

  • Zerrahn, Alexander & Huppmann, Daniel, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100459, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc14:100459
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/100459/1/VfS_2014_pid_679.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Natalia Fabra & Nils‐Henrik Fehr & David Harbord, 2006. "Designing electricity auctions," RAND Journal of Economics, RAND Corporation, vol. 37(1), pages 23-46, March.
    2. Natalia Fabra & Nils-Henrik M. von der Fehr & David Harbord, 2006. "Designing Electricity Auctions," RAND Journal of Economics, The RAND Corporation, vol. 37(1), pages 23-46, Spring.
    3. Dastidar, Krishnendu Ghosh, 1995. "On the Existence of Pure Strategy Bertrand Equilibrium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 19-32, January.
    4. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    5. Bert Willems, 2000. "Cournot competition in the electricity market with transmission constraints," Energy, Transport and Environment Working Papers Series ete0004, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
    6. Willems, Bert & Rumiantseva, Ina & Weigt, Hannes, 2009. "Cournot versus Supply Functions: What does the data tell us?," Energy Economics, Elsevier, vol. 31(1), pages 38-47, January.
    7. Boffa, Federico & Pingali, Viswanath & Vannoni, Davide, 2010. "Increasing market interconnection: An analysis of the Italian electricity spot market," International Journal of Industrial Organization, Elsevier, vol. 28(3), pages 311-322, May.
    8. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    9. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    10. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    12. Böckers, Veit & Haucap, Justus & Heimeshoff, Ulrich, 2013. "Benefits of an integrated European electricity market," DICE Discussion Papers 109, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    13. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    14. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 358-387, November.
    15. Pozo, David & Contreras, Javier & Sauma, Enzo, 2013. "If you build it, he will come: Anticipative power transmission planning," Energy Economics, Elsevier, vol. 36(C), pages 135-146.
    16. Spiecker, Stephan & Vogel, Philip & Weber, Christoph, 2013. "Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration," Energy Economics, Elsevier, vol. 37(C), pages 114-127.
    17. Steven Gabriel & Sauleh Siddiqui & Antonio Conejo & Carlos Ruiz, 2013. "Solving Discretely-Constrained Nash–Cournot Games with an Application to Power Markets," Networks and Spatial Economics, Springer, vol. 13(3), pages 307-326, September.
    18. Bert Willems, 2002. "Modeling Cournot Competition in an Electricity Market with Transmission Constraints," The Energy Journal, , vol. 23(3), pages 95-125, July.
    19. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Jonas Egerer & Clemens Gerbaulet & Casimir Lorenz, 2013. "European Electricity Grid Infrastructure Expansion in a 2050 Context," Discussion Papers of DIW Berlin 1299, DIW Berlin, German Institute for Economic Research.
    21. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    22. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    23. AfDB AfDB, . "Annual Report 2012," Annual Report, African Development Bank, number 461.
    24. Ruderer, D., 2012. "The Impact of Transmission Pricing in Network Industries," Cambridge Working Papers in Economics 1230, Faculty of Economics, University of Cambridge.
    25. Friedrich Kunz & Alexander Zerrahn, 2013. "The Benefit of Coordinating Congestion Management in Germany," Discussion Papers of DIW Berlin 1298, DIW Berlin, German Institute for Economic Research.
    26. Tanaka, Makoto, 2009. "Transmission-constrained oligopoly in the Japanese electricity market," Energy Economics, Elsevier, vol. 31(5), pages 690-701, September.
    27. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    28. Georg Gebhardt and Felix Hoffler, 2013. "How Competitive is Cross-border Trade of Electricity? Theory and Evidence from European Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    29. Zachmann, Georg, 2008. "Electricity wholesale market prices in Europe: Convergence?," Energy Economics, Elsevier, vol. 30(4), pages 1659-1671, July.
    30. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    31. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    32. Enzo Sauma & Shmuel Oren, 2006. "Proactive planning and valuation of transmission investments in restructured electricity markets," Journal of Regulatory Economics, Springer, vol. 30(3), pages 261-290, November.
    33. Peter Cramton & Axel Ockenfels & Steven Stoft, 2013. "Capacity Market Fundamentals," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    34. David M. Kreps & Jose A. Scheinkman, 1983. "Quantity Precommitment and Bertrand Competition Yield Cournot Outcomes," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 326-337, Autumn.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    2. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Zerrahn & Daniel Huppmann, 2017. "Network Expansion to Mitigate Market Power," Networks and Spatial Economics, Springer, vol. 17(2), pages 611-644, June.
    2. Spiridonova, Olga, 2016. "Transmission capacities and competition in Western European electricity market," Energy Policy, Elsevier, vol. 96(C), pages 260-273.
    3. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    4. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    5. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    6. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    7. Creti, Anna & Fumagalli, Eileen & Fumagalli, Elena, 2010. "Integration of electricity markets in Europe: Relevant issues for Italy," Energy Policy, Elsevier, vol. 38(11), pages 6966-6976, November.
    8. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    9. Grimm, Veronika & Martin, Alexander & Weibelzahl, Martin & Zöttl, Gregor, 2014. "Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 460, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    10. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    11. Petropoulos, Georgios & Willems, Bert, 2020. "Long-term transmission rights and dynamic efficiency," Energy Economics, Elsevier, vol. 88(C).
    12. Wolf-Peter Schill & Jonas Egerer & Juan Rosellón, 2015. "Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation," Journal of Regulatory Economics, Springer, vol. 47(1), pages 1-28, February.
    13. Taheri, S. Saeid & Kazempour, Jalal & Seyedshenava, Seyedjalal, 2017. "Transmission expansion in an oligopoly considering generation investment equilibrium," Energy Economics, Elsevier, vol. 64(C), pages 55-62.
    14. Hassanzadeh Moghimi, Farzad & Boomsma, Trine K. & Siddiqui, Afzal S., 2024. "Transmission planning in an imperfectly competitive power sector with environmental externalities," Energy Economics, Elsevier, vol. 134(C).
    15. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    16. Simshauser, P., 2021. "Renewable Energy Zones in Australia’s National Electricity Market," Cambridge Working Papers in Economics 2119, Faculty of Economics, University of Cambridge.
    17. Grimm, Veronika & Martin, Alexander & Weibenzahl, Martin & Zoettl, Gregor, 2014. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," FAU Discussion Papers in Economics 04/2014, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    18. Gerbaulet, C. & Weber, A., 2018. "When regulators do not agree: Are merchant interconnectors an option? Insights from an analysis of options for network expansion in the Baltic Sea region," Energy Policy, Elsevier, vol. 117(C), pages 228-246.
    19. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    20. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.

    More about this item

    JEL classification:

    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc14:100459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.