IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v17y2017i4d10.1007_s11067-017-9363-0.html
   My bibliography  Save this article

Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach

Author

Listed:
  • Dávid Csercsik

    () (Pázmány Péter Catholic University)

  • László Á. Kóczy

    () (Center for Economic and Regional Studies of the Hungarian Academy of Sciences
    Óbuda University)

Abstract

Abstract The users of electricity networks are organized into groups where the production and consumption of electricity is in balance. We study the formation of these balancing groups using a cooperative game in partition function form defined over an ideal (lossless) DC load flow model of the power grid. We show that such games contain widespread externalities that can be both negative and positive. We study the stability of certain partitions using the concept of the recursive core. While the game is clearly cohesive, we demonstrate that it is not necessarily superadditive. We argue that subadditivity may be a barrier to achieve full cooperation.

Suggested Citation

  • Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
  • Handle: RePEc:kap:netspa:v:17:y:2017:i:4:d:10.1007_s11067-017-9363-0
    DOI: 10.1007/s11067-017-9363-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-017-9363-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    2. Helga Habis & Dávid Csercsik, 2015. "Cooperation with Externalities and Uncertainty," Networks and Spatial Economics, Springer, vol. 15(1), pages 1-16, March.
    3. Lange, Fabien & Grabisch, Michel, 2009. "Values on regular games under Kirchhoff's laws," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 322-340, November.
    4. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    5. repec:kap:netspa:v:17:y:2017:i:2:d:10.1007_s11067-017-9338-1 is not listed on IDEAS
    6. Csoka, Peter & Herings, P. Jean-Jacques & Koczy, Laszlo A., 2007. "Coherent measures of risk from a general equilibrium perspective," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2517-2534, August.
    7. repec:kap:netspa:v:17:y:2017:i:2:d:10.1007_s11067-016-9336-8 is not listed on IDEAS
    8. Wu, Felix & Varaiya, Pravin & Spiller, Pablo & Oren, Shmuel, 1996. "Folk Theorems on Transmission Access: Proofs and Counterexamples," Journal of Regulatory Economics, Springer, vol. 10(1), pages 5-23, July.
    9. Habis, Helga & Herings, P. Jean-Jacques, 2011. "Transferable utility games with uncertainty," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2126-2139, September.
    10. Hobbs, Benjamin F. & Kelly, Kevin A., 1992. "Using game theory to analyze electric transmission pricing policies in the United States," European Journal of Operational Research, Elsevier, vol. 56(2), pages 154-171, January.
    11. Steven Gabriel & Sauleh Siddiqui & Antonio Conejo & Carlos Ruiz, 2013. "Solving Discretely-Constrained Nash–Cournot Games with an Application to Power Markets," Networks and Spatial Economics, Springer, vol. 13(3), pages 307-326, September.
    12. Gately, Dermot, 1974. "Sharing the Gains from Regional Cooperation: A Game Theoretic Application to Planning Investment in Electric Power," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 195-208, February.
    13. Bando, Keisuke, 2012. "Many-to-one matching markets with externalities among firms," Journal of Mathematical Economics, Elsevier, vol. 48(1), pages 14-20.
    14. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    15. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    16. Pedro A. Neto & Terry L. Friesz & Ke Han, 2016. "Electric Power Network Oligopoly as a Dynamic Stackelberg Game," Networks and Spatial Economics, Springer, vol. 16(4), pages 1211-1241, December.
    17. Richard Gilbert & Karsten Neuhoff & David Newbery, 2004. "Allocating Transmission to Mitigate Market Power in Electricity Markets," RAND Journal of Economics, The RAND Corporation, vol. 35(4), pages 691-709, Winter.
    18. Yukihiko Funaki & Takehiko Yamato, 1999. "The core of an economy with a common pool resource: A partition function form approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(2), pages 157-171.
    19. Yi, Sang-Seung, 1997. "Stable Coalition Structures with Externalities," Games and Economic Behavior, Elsevier, vol. 20(2), pages 201-237, August.
    20. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:17:y:2017:i:4:d:10.1007_s11067-017-9363-0. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.