IDEAS home Printed from https://ideas.repec.org/p/has/discpr/1125.html
   My bibliography  Save this paper

Externalities in the games over electrical power transmission networks

Author

Listed:
  • David Csercsik

    (Process Control Research Group - Computer and Automation Institute, Hungarian Academy of Sciences)

  • Laszlo A. Koczy

    (Institute of Economics - Hungarian Academy of Sciences)

Abstract

An electrical transmission network consists of producers, consumers and the power lines connecting them. We build an ideal (lossless) DC load flow model as a cooperative game over a graph with the producers and consumers located at the nodes, each described by a maximum supply or desired demand and the power lines represented by the edges, each with a given power transmission capacity and admittance value describing its ability to transmit electricity. Today's transmission networks are highly interconnected, but organisationally partitioned into several subnetworks, the so-called balancing groups with balanced production and consumption. We study the game of balancing group formation and show that the game contains widespread externalities that can be both negative and positive. We study the stability of the transportation network using the recursive core. While the game is clearly cohesive, we demonstrate that it is not necessarily superadditive. We argue that subadditivity may be a barrier to achieve full cooperation. Finally the model is extended to allow for the extension of the underlying transmission network.

Suggested Citation

  • David Csercsik & Laszlo A. Koczy, 2011. "Externalities in the games over electrical power transmission networks," CERS-IE WORKING PAPERS 1125, Institute of Economics, Centre for Economic and Regional Studies.
  • Handle: RePEc:has:discpr:1125
    as

    Download full text from publisher

    File URL: http://econ.core.hu/file/download/mtdp/MTDP1125.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Parkash Chander & Henry Tulkens, 2006. "The Core of an Economy with Multilateral Environmental Externalities," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 153-175, Springer.
    2. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    3. Hobbs, Benjamin F. & Kelly, Kevin A., 1992. "Using game theory to analyze electric transmission pricing policies in the United States," European Journal of Operational Research, Elsevier, vol. 56(2), pages 154-171, January.
    4. László Kóczy, 2007. "A recursive core for partition function form games," Theory and Decision, Springer, vol. 63(1), pages 41-51, August.
    5. Kóczy, László Á., 2009. "Sequential coalition formation and the core in the presence of externalities," Games and Economic Behavior, Elsevier, vol. 66(1), pages 559-565, May.
    6. Kleindorfer, Paul R. & Wu, D. -J. & Fernando, Chitru S., 2001. "Strategic gaming in electric power markets," European Journal of Operational Research, Elsevier, vol. 130(1), pages 156-168, April.
    7. Gately, Dermot, 1974. "Sharing the Gains from Regional Cooperation: A Game Theoretic Application to Planning Investment in Electric Power," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 195-208, February.
    8. Richard Gilbert & Neuhoff, K. & Newbery, D., 2002. "Allocating Transmission to Mitigate Market Power in Electricity Networks," Cambridge Working Papers in Economics 0225, Faculty of Economics, University of Cambridge.
    9. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    10. Yihsu Chen & Benjamin Hobbs & Sven Leyffer & Todd Munson, 2006. "Leader-Follower Equilibria for Electric Power and NO x Allowances Markets," Computational Management Science, Springer, vol. 3(4), pages 307-330, September.
    11. Richard Gilbert & Karsten Neuhoff & David Newbery, 2004. "Allocating Transmission to Mitigate Market Power in Electricity Markets," RAND Journal of Economics, The RAND Corporation, vol. 35(4), pages 691-709, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Nem minden hálózat szuper (lehet szubadditív is)
      by Kóczy László in Kóczy játékelmélet blogja on 2011-05-30 18:18:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helga Habis & Dávid Csercsik, 2015. "Cooperation with Externalities and Uncertainty," Networks and Spatial Economics, Springer, vol. 15(1), pages 1-16, March.
    2. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    3. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, March.
    4. David Csercsik, 2013. "Competition and cooperation in a PFF game theoretic model of electrical energy trade," CERS-IE WORKING PAPERS 1310, Institute of Economics, Centre for Economic and Regional Studies.
    5. Joris Morbee, 2014. "International Transport of Captured $$\hbox {CO}_2$$ CO 2 : Who Can Gain and How Much?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 299-322, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    2. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    3. David Csercsik, 2013. "Competition and cooperation in a PFF game theoretic model of electrical energy trade," CERS-IE WORKING PAPERS 1310, Institute of Economics, Centre for Economic and Regional Studies.
    4. Paul Twomey & Richard Green & Karsten Neuhoff & David Newbery, 2005. "A Review of the Monitoring of Market Power: The Possible Roles of TSOs in Monitoring for Market Power Issues in Congested Transmission Systems," Working Papers 0502, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
    5. Okada, Akira, 2010. "The Nash bargaining solution in general n-person cooperative games," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2356-2379, November.
    6. Lech Kruś, 2009. "Cost allocation in partition function form games," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(2), pages 39-49.
    7. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    8. Helga Habis & Dávid Csercsik, 2015. "Cooperation with Externalities and Uncertainty," Networks and Spatial Economics, Springer, vol. 15(1), pages 1-16, March.
    9. Maria Montero, 2023. "Coalition Formation in Games with Externalities," Dynamic Games and Applications, Springer, vol. 13(2), pages 525-548, June.
    10. Holmberg, P. & Lazarczyk, E., 2012. "Congestion management in electricity networks: Nodal, zonal and discriminatory pricing," Cambridge Working Papers in Economics 1219, Faculty of Economics, University of Cambridge.
    11. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    12. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, March.
    13. Joris Morbee, 2014. "International Transport of Captured $$\hbox {CO}_2$$ CO 2 : Who Can Gain and How Much?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 299-322, March.
    14. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    15. Gert Brunekreeft & David Newbery, 2006. "Should merchant transmission investment be subject to a must-offer provision?," Journal of Regulatory Economics, Springer, vol. 30(3), pages 233-260, November.
    16. Kóczy, LászlóÁ., 2015. "Stationary consistent equilibrium coalition structures constitute the recursive core," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 104-110.
    17. Crawford, Gregory S. & Crespo, Joseph & Tauchen, Helen, 2007. "Bidding asymmetries in multi-unit auctions: Implications of bid function equilibria in the British spot market for electricity," International Journal of Industrial Organization, Elsevier, vol. 25(6), pages 1233-1268, December.
    18. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    19. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    20. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.

    More about this item

    Keywords

    Energy transmission networks; Cooperative game theory; Partition function form games; Externalities;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • L14 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Transactional Relationships; Contracts and Reputation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:has:discpr:1125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nora Horvath (email available below). General contact details of provider: https://edirc.repec.org/data/iehashu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.