IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v57y2009i2p274-286.html
   My bibliography  Save this article

A Comparison of Electricity Market Designs in Networks

Author

Listed:
  • Andreas Ehrenmann

    () (Judge Business School, University of Cambridge, Cambridge, United Kingdom)

  • Karsten Neuhoff

    () (Faculty of Economics, University of Cambridge, Cambridge, United Kingdom)

Abstract

In Europe, two market designs are discussed for electricity trade and transmission. We argue that their performance in the presence of market power can be represented by two models from the literature. In contrast to examples for simple two-node networks, we show that in more complex networks a general ranking of both designs is not possible. Hence, computational models are required to evaluate the designs for realistic parameter assumptions. We extend existing formulations of both models to represent them as equilibrium problems with equilibrium constraints (EPEC) with equivalent representation of demand, fringe generation, and strategic generators. In a numerical simulation for the Northwestern European network, the integrated market design performs better. This difference illustrates the impact of small assumptions on the outcome of strategic models.

Suggested Citation

  • Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
  • Handle: RePEc:inm:oropre:v:57:y:2009:i:2:p:274-286
    DOI: 10.1287/opre.1080.0624
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1080.0624
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hanif D. Sherali & Allen L. Soyster & Frederic H. Murphy, 1983. "Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations," Operations Research, INFORMS, vol. 31(2), pages 253-276, April.
    2. WEI, Jing-Yuan & SMEERS, Yves, 1999. "Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices," LIDAM Reprints CORE 1454, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Shmuel S. Oren, 1997. "Economic Inefficiency of Passive Transmission Rights in Congested Electricity Systems with Competitive Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 63-83.
    4. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    5. Karsten Neuhoff, 2003. "Integrating Transmission and Energy Markets Mitigates Market Power," Working Papers EP17, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Harvey, Scott M. & Hogan, William W. & Pope, Susan L., 1996. "Transmission capacity reservations implemented through a spot market with transmission congestion contracts," The Electricity Journal, Elsevier, vol. 9(9), pages 42-55, November.
    7. Ehrenmann, Andreas & Smeers, Yves, 2005. "Inefficiencies in European congestion management proposals," Utilities Policy, Elsevier, vol. 13(2), pages 135-152, June.
    8. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    9. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    10. Blaise Allaz & Jean-Luc Vila, 1993. "Cournot Competition, Forward Markets and Efficiency," Post-Print hal-00511806, HAL.
    11. Wei Jing-Yuan & Yves Smeers, 1999. "Spatial Oligopolistic Electricity Models with Cournot Generators and Regulated Transmission Prices," Operations Research, INFORMS, vol. 47(1), pages 102-112, February.
    12. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    13. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    14. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    15. Yao, Jian & Oren, Shmuel S. & Adler, Ilan, 2007. "Two-settlement electricity markets with price caps and Cournot generation firms," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1279-1296, September.
    16. Green, Richard, 1999. "The Electricity Contract Market in England and Wales," Journal of Industrial Economics, Wiley Blackwell, vol. 47(1), pages 107-124, March.
    17. Chao, Hung-Po & Peck, Stephen, 1996. "A Market Mechanism for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 10(1), pages 25-59, July.
    18. Stefan Scholtes & Michael Stöhr, 2001. "How Stringent is the Linear Independence Assumption for Mathematical Programs with Complementarity Constraints?," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 851-863, November.
    19. Richard Gilbert & Karsten Neuhoff & David Newbery, 2004. "Allocating Transmission to Mitigate Market Power in Electricity Markets," RAND Journal of Economics, The RAND Corporation, vol. 35(4), pages 691-709, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Escobar & Alejandro Jofré, 2010. "Monopolistic competition in electricity networks with resistance losses," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(1), pages 101-121, July.
    2. Kristiansen, Tarjei, 2007. "An assessment of the Danish-German cross-border auctions," Energy Policy, Elsevier, vol. 35(6), pages 3369-3382, June.
    3. Bjørndal, Mette & Gribkovskaia, Victoria & Jörnsten, Kurt, 2014. "Market Power in a Power Market with Transmission Constraints," Discussion Papers 2014/29, Norwegian School of Economics, Department of Business and Management Science.
    4. Hu, X. & Ralph, D. & Ralph, E.K. & Bardsley, P. & Ferris, M.C., 2004. "Electricity Generation with Looped Transmission Networks: Bidding to an ISO," Cambridge Working Papers in Economics 0470, Faculty of Economics, University of Cambridge.
    5. Meeus, Leonardo, 2011. "Implicit auctioning on the Kontek Cable: Third time lucky?," Energy Economics, Elsevier, vol. 33(3), pages 413-418, May.
    6. Hélène Le Cadre, 2018. "On the Efficiency of Local Electricity Markets Under Decentralized and Centralized Designs: A Multi-leader Stackelberg Game Analysis," Working Papers hal-01619885, HAL.
    7. Hélène Le Cadre, 2019. "On the efficiency of local electricity markets under decentralized and centralized designs: a multi-leader Stackelberg game analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 953-984, December.
    8. SMEERS, Yves, 2005. "How well can one measure market power in restructured electricity systems ?," LIDAM Discussion Papers CORE 2005050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Daxhelet, O. & Smeers, Y., 2007. "The EU regulation on cross-border trade of electricity: A two-stage equilibrium model," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1396-1412, September.
    10. Jan Horst Keppler, Sebastien Phan, and Yannick Le Pen, 2016. "The Impacts of Variable Renewable Production and Market Coupling on the Convergence of French and German Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    11. Neuhoff, Karsten & Newbery, David, 2005. "Evolution of electricity markets: Does sequencing matter?," Utilities Policy, Elsevier, vol. 13(2), pages 163-173, June.
    12. Morales, Lucía & Hanly, Jim, 2018. "European power markets–A journey towards efficiency," Energy Policy, Elsevier, vol. 116(C), pages 78-85.
    13. Frederic Murphy & Axel Pierru & Yves Smeers, 2016. "A Tutorial on Building Policy Models as Mixed-Complementarity Problems," Interfaces, INFORMS, vol. 46(6), pages 465-481, December.
    14. Krebs, Vanessa & Schewe, Lars & Schmidt, Martin, 2018. "Uniqueness and multiplicity of market equilibria on DC power flow networks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 165-178.
    15. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    16. Alexander Zerrahn & Daniel Huppmann, 2017. "Network Expansion to Mitigate Market Power," Networks and Spatial Economics, Springer, vol. 17(2), pages 611-644, June.
    17. EHRENMANN, Andreas & SMEERS, Yves, 2004. "Inefficiencies in European congestion management proposals," LIDAM Discussion Papers CORE 2004090, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    19. Intini, Mario & Waterson, Michael, 2020. "Do British wind generators behave strategically in response to the Western Link interconnector?," CAGE Online Working Paper Series 455, Competitive Advantage in the Global Economy (CAGE).
    20. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    21. Neuhoff, K. & Newbery, D., 2004. "Integrating Energy Markets: Does Sequencing Matter?," Cambridge Working Papers in Economics 0442, Faculty of Economics, University of Cambridge.
    22. Hu, X. & Ralph, R., 2006. "Using EPECs to model bilevel games in restructured electricity markets with locational prices," Cambridge Working Papers in Economics 0619, Faculty of Economics, University of Cambridge.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Yao & Ilan Adler & Shmuel S. Oren, 2008. "Modeling and Computing Two-Settlement Oligopolistic Equilibrium in a Congested Electricity Network," Operations Research, INFORMS, vol. 56(1), pages 34-47, February.
    2. Benjamin F. Hobbs & J. S. Pang, 2007. "Nash-Cournot Equilibria in Electric Power Markets with Piecewise Linear Demand Functions and Joint Constraints," Operations Research, INFORMS, vol. 55(1), pages 113-127, February.
    3. Rajnish Kamat & Shmuel Oren, 2004. "Two-settlement Systems for Electricity Markets under Network Uncertainty and Market Power," Journal of Regulatory Economics, Springer, vol. 25(1), pages 5-37, January.
    4. Yao, Jian & Oren, Shmuel S. & Adler, Ilan, 2007. "Two-settlement electricity markets with price caps and Cournot generation firms," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1279-1296, September.
    5. James Bushnell, 2003. "A Mixed Complementarity Model of Hydrothermal Electricity Competition in the Western United States," Operations Research, INFORMS, vol. 51(1), pages 80-93, February.
    6. Xinmin Hu & Daniel Ralph & Eric K. Ralph & Peter Bardsley & Michael C. Ferris, 2004. "Electricity Generation with Looped Transmission Networks: Bidding to an ISO," Working Papers EP65, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    8. Joskow, Paul L & Tirole, Jean, 1999. "Transmission Rights and Market Power on Electric Power Networks I: Financial Rights," CEPR Discussion Papers 2093, C.E.P.R. Discussion Papers.
    9. Petropoulos, Georgios & Willems, Bert, 2020. "Long-term transmission rights and dynamic efficiency," Energy Economics, Elsevier, vol. 88(C).
    10. Karsten Neuhoff, 2003. "Integrating Transmission and Energy Markets Mitigates Market Power," Working Papers EP17, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Sertaç Oruç & Scott Cunningham, 2014. "Transmission Rights to the Electrical Transmission Grid in the Post Liberalization Era," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 686-705, December.
    12. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    13. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    14. Desmond Cai & Anish Agarwal & Adam Wierman, 2020. "On the Inefficiency of Forward Markets in Leader–Follower Competition," Operations Research, INFORMS, vol. 68(1), pages 35-52, January.
    15. Fernández, Mauricio & Muñoz, Francisco D. & Moreno, Rodrigo, 2020. "Analysis of imperfect competition in natural gas supply contracts for electric power generation: A closed-loop approach," Energy Economics, Elsevier, vol. 87(C).
    16. Pellini, Elisabetta, 2012. "Measuring the impact of market coupling on the Italian electricity market," Energy Policy, Elsevier, vol. 48(C), pages 322-333.
    17. Lars Schewe & Martin Schmidt, 2020. "The impact of potential-based physics models on pricing in energy networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1003-1029, September.
    18. Lamadrid, Alberto J. & Maneevitjit, Surin & Mount, Timothy D., 2016. "The economic value of transmission lines and the implications for planning models," Energy Economics, Elsevier, vol. 57(C), pages 1-15.
    19. Guo, Nongchao & Lo Prete, Chiara, 2019. "Cross-product manipulation with intertemporal constraints: An equilibrium model," Energy Policy, Elsevier, vol. 134(C).
    20. Blázquez de Paz, Mario, 2018. "Electricity auctions in the presence of transmission constraints and transmission costs," Energy Economics, Elsevier, vol. 74(C), pages 605-627.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:57:y:2009:i:2:p:274-286. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.