IDEAS home Printed from https://ideas.repec.org/p/has/discpr/1120.html

Transferable Utility Games with Uncertainty

Author

Listed:
  • Helga Habis

    (Institute of Economics - Hungarian Academy of Sciences)

  • P. Jean-Jacques Herings

    (Department of Economics, Universiteit Maastricht)

Abstract

We introduce the concept of a TUU-game, a transferable utility game with uncertainty. In a TUU-game there is uncertainty regarding the payoffs of coalitions. One out of a finite number of states of nature materializes and conditional on the state, the players are involved in a particular transferable utility game. We consider the case without ex ante commitment possibilities and propose the Weak Sequential Core as a solution concept. We characterize the Weak Sequential Core and show that it is non-empty if all ex post TUgames are convex.

Suggested Citation

  • Helga Habis & P. Jean-Jacques Herings, 2011. "Transferable Utility Games with Uncertainty," CERS-IE WORKING PAPERS 1120, Institute of Economics, Centre for Economic and Regional Studies.
  • Handle: RePEc:has:discpr:1120
    as

    Download full text from publisher

    File URL: http://econ.core.hu/file/download/mtdp/MTDP1120.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    2. Elena Parilina & Stepan Akimochkin, 2021. "Cooperative Stochastic Games with Mean-Variance Preferences," Mathematics, MDPI, vol. 9(3), pages 1-15, January.
    3. Helga Habis & P. Herings, 2013. "Stochastic bankruptcy games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 973-988, November.
    4. Habis, Helga, 2012. "Sztochasztikus csődjátékok - avagy hogyan osszunk szét egy bizonytalan méretű tortát? [Stochastic bankruptcy games. How can a cake of uncertain dimensions be divided?]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(12), pages 1299-1310.
    5. M. G. Fiestras-Janeiro & I. García-Jurado & A. Meca & M. A. Mosquera, 2020. "On benefits of cooperation under strategic power," Annals of Operations Research, Springer, vol. 288(1), pages 285-306, May.
    6. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    7. repec:hal:pseose:halshs-01207823 is not listed on IDEAS
    8. R. R. Routledge & R. A. Edwards, 2020. "Ambiguity and price competition," Theory and Decision, Springer, vol. 88(2), pages 231-256, March.
    9. Sinan Ertemel & Rajnish Kumar, 2018. "Proportional rules for state contingent claims," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 229-246, March.
    10. Donald Nganmegni Njoya & Issofa Moyouwou & Nicolas Gabriel Andjiga, 2021. "The equal-surplus Shapley value for chance-constrained games on finite sample spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 463-499, June.
    11. Kamishiro, Yusuke & Vohra, Rajiv & Serrano, Roberto, 2023. "Signaling, screening, and core stability," Journal of Economic Theory, Elsevier, vol. 213(C).
    12. Yang, Jian & Li, Jianbin, 2020. "Cooperative game with nondeterministic returns," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 123-140.
    13. Junnosuke Shino & Shinichi Ishihara & Shimpei Yamauchi, 2022. "Shapley Mapping and Its Axiomatizations in n -Person Cooperative Interval Games," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    14. Thomson, William, 2015. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update," Mathematical Social Sciences, Elsevier, vol. 74(C), pages 41-59.
    15. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    16. Laszlo A. Koczy, 2019. "The risk-based core for cooperative games with uncertainty," CERS-IE WORKING PAPERS 1906, Institute of Economics, Centre for Economic and Regional Studies.
    17. Chatterjee, Siddharth & Ertemel, Sinan & Kumar, Rajnish, 2023. "Rationing rules for risky claims," Journal of Mathematical Economics, Elsevier, vol. 108(C).
    18. David Csercsik, 2013. "Competition and cooperation in a PFF game theoretic model of electrical energy trade," CERS-IE WORKING PAPERS 1310, Institute of Economics, Centre for Economic and Regional Studies.
    19. Routledge, R.R., 2014. "Deviations, uncertainty and the core," Games and Economic Behavior, Elsevier, vol. 88(C), pages 286-297.
    20. Németh, Tibor & Pintér, Miklós, 2017. "The non-emptiness of the weak sequential core of a transferable utility game with uncertainty," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 1-6.
    21. Routledge R. R., 2012. "On Communication and the Weak Sequential Core," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-22, September.
    22. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    23. Berden, Caroline & Peters, Hans & Robles, Laura & Vermeulen, Dries, 2022. "Strategic transfers between cooperative games," Games and Economic Behavior, Elsevier, vol. 133(C), pages 77-84.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:has:discpr:1120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nora Horvath The email address of this maintainer does not seem to be valid anymore. Please ask Nora Horvath to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/iehashu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.