IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v65y2017icp251-261.html
   My bibliography  Save this article

Implications of the EU Emissions Trading System for the South-East Europe Regional Electricity Market

Author

Listed:
  • Višković, Verena
  • Chen, Yihsu
  • Siddiqui, Afzal S.

Abstract

As part of its climate policy, the European Union (EU) aims to reduce greenhouse gas (GHG) emissions levels by 20% by the year 2020 compared to 1990 levels. Although the EU is projected to reach this goal, its achievement of objectives under its Emissions Trading System (ETS) may be delayed by carbon leakage, which is defined as a situation in which the reduction in emissions in the ETS region is partially offset by an increase in carbon emissions in the non-ETS regions. We study the interaction between emissions and hydropower availability in order to estimate the magnitude of carbon leakage in the South-East Europe Regional Electricity Market (SEE-REM) via a bottom-up partial equilibrium framework. We find that 6.3% to 40.5% of the emissions reduction achieved in the ETS part of SEE-REM could be leaked to the non-ETS part depending on the price of allowances. Somewhat surprisingly, greater hydropower availability may increase emissions in the ETS part of SEE-REM. However, carbon leakage might be limited by demand response to higher electricity prices in the non-ETS area of SEE-REM. Such carbon leakage can affect both the competitiveness of producers in ETS member countries on the periphery of the ETS and the achievement of EU targets for CO2 emissions reduction. Meanwhile, higher non-ETS electricity prices imply that the current policy can have undesirable outcomes for consumers in non-ETS countries, while non-ETS producers would experience an increase in their profits due to higher power prices as well as exports. The presence of carbon leakage in SEE-REM suggests that current EU policy might become more effective when it is expanded to cover more countries in the future.

Suggested Citation

  • Višković, Verena & Chen, Yihsu & Siddiqui, Afzal S., 2017. "Implications of the EU Emissions Trading System for the South-East Europe Regional Electricity Market," Energy Economics, Elsevier, vol. 65(C), pages 251-261.
  • Handle: RePEc:eee:eneeco:v:65:y:2017:i:c:p:251-261
    DOI: 10.1016/j.eneco.2017.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317301445
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    2. Robert Wilson, 2002. "Architecture of Power Markets," Econometrica, Econometric Society, vol. 70(4), pages 1299-1340, July.
    3. Bushnell, James & Chen, Yihsu, 2012. "Allocation and leakage in regional cap-and-trade markets for CO2," Resource and Energy Economics, Elsevier, vol. 34(4), pages 647-668.
    4. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    5. Tanaka, Makoto & Chen, Yihsu, 2013. "Market power in renewable portfolio standards," Energy Economics, Elsevier, vol. 39(C), pages 187-196.
    6. Rintamäki, Tuomas & Siddiqui, Afzal S. & Salo, Ahti, 2016. "How much is enough? Optimal support payments in a renewable-rich power system," Energy, Elsevier, vol. 117(P1), pages 300-313.
    7. Christian von Hirschhausen, 2014. "The German Energiewend - An Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    8. Palmer, Karen & Butraw, Dallas & Kahn, Danny, 2006. "Simple Rules for Targeting CO2 Allowance Allocations to Compensate Firms," Discussion Papers dp-06-28, Resources For the Future.
    9. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    10. Burtraw, Dallas & Kahn, Danny & Palmer, Karen, 2006. "CO2 Allowance Allocation in the Regional Greenhouse Gas Initiative and the Effect on Electricity Investors," The Electricity Journal, Elsevier, vol. 19(2), pages 79-90, March.
    11. Hyman, Leonard S., 2010. "Restructuring electricity policy and financial models," Energy Economics, Elsevier, vol. 32(4), pages 751-757, July.
    12. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    13. Karen Palmer & Dallas Burtraw & Danny Kahn, 2006. "Simple rules for targeting CO 2 allowance allocations to compensate firms," Climate Policy, Taylor & Francis Journals, vol. 6(4), pages 477-493, July.
    14. Tanachai Limpaitoon, Yihsu Chen, and Shmuel S. Oren, 2014. "The Impact of Imperfect Competition in Emission Permits Trading on Oligopolistic Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. James Bushnell, 2003. "A Mixed Complementarity Model of Hydrothermal Electricity Competition in the Western United States," Operations Research, INFORMS, vol. 51(1), pages 80-93, February.
    16. Tanachai Limpaitoon & Yihsu Chen & Shmuel Oren, 2011. "The impact of carbon cap and trade regulation on congested electricity market equilibrium," Journal of Regulatory Economics, Springer, vol. 40(3), pages 237-260, December.
    17. Anthony Downward, 2010. "Carbon Charges in Electricity Markets with Strategic Behavior and Transmission," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 159-166.
    18. Bushnell, James & Chen, Yihsu & Zaragoza-Watkins, Matthew, 2014. "Downstream regulation of CO2 emissions in California's electricity sector," Energy Policy, Elsevier, vol. 64(C), pages 313-323.
    19. Van den Bergh, Kenneth & Delarue, Erik & D'haeseleer, William, 2013. "Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector," Energy Policy, Elsevier, vol. 63(C), pages 1021-1031.
    20. repec:aen:journl:eeep3_2_01intro is not listed on IDEAS
    21. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    22. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    23. Chen, Yihsu, 2009. "Does a regional greenhouse gas policy make sense? A case study of carbon leakage and emissions spillover," Energy Economics, Elsevier, vol. 31(5), pages 667-675, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Carbon leakage; CO2 emissions; EU ETS; Energy Community;

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:65:y:2017:i:c:p:251-261. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.