IDEAS home Printed from https://ideas.repec.org/a/aea/aejpol/v9y2017i2p57-90.html
   My bibliography  Save this article

Strategic Policy Choice in State-Level Regulation: The EPA's Clean Power Plan

Author

Listed:
  • James B. Bushnell
  • Stephen P. Holland
  • Jonathan E. Hughes
  • Christopher R. Knittel

Abstract

The EPA's Clean Power Plan sets goals for CO2 emissions rate reductions by 2030 that vary substantially across states. States can choose the regulatory mechanism they use and whether or not to join with other states in implementing their goals. We analyze incentives to adopt rate standards versus cap-and-trade with theory and simulation. We show conditions where adoption of inefficient rate standards is a dominant strategy from both consumers' and generators' perspectives. Numerical simulations of the western electricity system highlight incentives for uncoordinated policies that lower welfare and increase emissions relative to coordination.

Suggested Citation

  • James B. Bushnell & Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2017. "Strategic Policy Choice in State-Level Regulation: The EPA's Clean Power Plan," American Economic Journal: Economic Policy, American Economic Association, vol. 9(2), pages 57-90, May.
  • Handle: RePEc:aea:aejpol:v:9:y:2017:i:2:p:57-90
    Note: DOI: 10.1257/pol.20150237
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/articles?id=10.1257/pol.20150237
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=YnCzpD_gdahc3RVoU682y6CQoy9BWyKv
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=jLXSOMv8QrE1Qe5ziPR8aKjSH2024bIM
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=xbtcJ2N_nalOY5yYnmUVU2Dgl2mx5hF9
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James B. Bushnell & Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2017. "Strategic Policy Choice in State-Level Regulation: The EPA's Clean Power Plan," American Economic Journal: Economic Policy, American Economic Association, vol. 9(2), pages 57-90, May.
    2. Bushnell, James & Chen, Yihsu, 2012. "Allocation and leakage in regional cap-and-trade markets for CO2," Resource and Energy Economics, Elsevier, vol. 34(4), pages 647-668.
    3. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    4. Meredith L. Fowlie, 2009. "Incomplete Environmental Regulation, Imperfect Competition, and Emissions Leakage," American Economic Journal: Economic Policy, American Economic Association, vol. 1(2), pages 72-112, August.
    5. Huang, Haixiao & Khanna, Madhu & Önal, Hayri & Chen, Xiaoguang, 2013. "Stacking low carbon policies on the renewable fuels standard: Economic and greenhouse gas implications," Energy Policy, Elsevier, vol. 56(C), pages 5-15.
    6. William A. Pizer, 2005. "The case for intensity targets," Climate Policy, Taylor & Francis Journals, vol. 5(4), pages 455-462, July.
    7. Stavins, Robert N., 2008. "A Meaningful U.S. Cap-and-Trade System to Address Climate Change," Climate Change Modelling and Policy Working Papers 44469, Fondazione Eni Enrico Mattei (FEEM).
    8. Richard G. Newell & William A. Pizer & Daniel Raimi, 2014. "Carbon Markets: Past, Present, and Future," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 191-215, October.
    9. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    10. Carolyn Fischer, 2003. "Combining rate-based and cap-and-trade emissions policies," Climate Policy, Taylor & Francis Journals, vol. 3(sup2), pages 89-103, December.
    11. Dallas Burtraw & Karen Palmer & Anthony Paul & Sophie Pan, 2015. "A Proximate Mirror: Greenhouse Gas Rules and Strategic Behavior Under the US Clean Air Act," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 217-241, October.
    12. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 853-883.
    13. Lester D. Taylor, 1975. "The Demand for Electricity: A Survey," Bell Journal of Economics, The RAND Corporation, vol. 6(1), pages 74-110, Spring.
    14. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    15. Helfand, Gloria E, 1991. "Standards versus Standards: The Effects of Different Pollution Restrictions," American Economic Review, American Economic Association, vol. 81(3), pages 622-634, June.
    16. Bushnell, James & Chen, Yihsu & Zaragoza-Watkins, Matthew, 2014. "Downstream regulation of CO2 emissions in California's electricity sector," Energy Policy, Elsevier, vol. 64(C), pages 313-323.
    17. Kamerschen, David R. & Porter, David V., 2004. "The demand for residential, industrial and total electricity, 1973-1998," Energy Economics, Elsevier, vol. 26(1), pages 87-100, January.
    18. John E. Kwoka, 1983. "The Limits of Market-Oriented Regulatory Techniques: The Case of Automotive Fuel Economy," The Quarterly Journal of Economics, Oxford University Press, vol. 98(4), pages 695-704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xenophon, Aleksis Kazubiernis & Hill, David John, 2020. "Adaptive mechanisms to refund emissions payments," Applied Energy, Elsevier, vol. 278(C).
    2. Wang, Ge & Zhang, Qi & Su, Bin & Shen, Bo & Li, Yan & Li, Zhengjun, 2021. "Coordination of tradable carbon emission permits market and renewable electricity certificates market in China," Energy Economics, Elsevier, vol. 93(C).
    3. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Todd D. Gerarden & W. Spencer Reeder & James H. Stock, 2020. "Federal Coal Program Reform, the Clean Power Plan, and the Interaction of Upstream and Downstream Climate Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 12(1), pages 167-199, February.
    5. James B. Bushnell & Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2017. "Strategic Policy Choice in State-Level Regulation: The EPA's Clean Power Plan," American Economic Journal: Economic Policy, American Economic Association, vol. 9(2), pages 57-90, May.
    6. Sam Fankhauser & Frank Jotzo, 2017. "Economic growth and development with low-carbon energy," CCEP Working Papers 1705, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    7. Harrison Fell & Daniel Kaffine & Daniel Steinberg, 2017. "Energy Efficiency and Emissions Intensity Standards," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 201-226.
    8. Bento, Antonio M. & Garg, Teevrat & Kaffine, Daniel, 2018. "Emissions reductions or green booms? General equilibrium effects of a renewable portfolio standard," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 78-100.
    9. Ibanez, Marcela & Blackman, Allen, 2015. "Environmental and Economic Impacts of Growing Certified Organic Coffee in Colombia," Discussion Papers dp-15-02, Resources For the Future.
    10. Burnett, J. Wesley & Kiesling, L. Lynne, 2019. "Power plant heat-rate efficiency as a regulatory mechanism: Implications for emission rates and levels," Energy Policy, Elsevier, vol. 134(C).
    11. Tatyana Deryugina & Alexander MacKay & Julian Reif, 2020. "The Long-Run Dynamics of Electricity Demand: Evidence from Municipal Aggregation," American Economic Journal: Applied Economics, American Economic Association, vol. 12(1), pages 86-114, January.
    12. Dallas Burtraw & Karen Palmer & Anthony Paul & Sophie Pan, 2015. "A Proximate Mirror: Greenhouse Gas Rules and Strategic Behavior Under the US Clean Air Act," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 217-241, October.
    13. Don Fullerton & Daniel H. Karney, 2018. "Potential State‐Level Carbon Revenue Under The Clean Power Plan," Contemporary Economic Policy, Western Economic Association International, vol. 36(1), pages 149-166, January.
    14. Jonathon M. Becker, 2020. "Tradable performance standards in a dynamic context," Working Papers 2020-03, Colorado School of Mines, Division of Economics and Business.
    15. Palmer, Karen & Paul, Anthony, 2015. "A Primer on Comprehensive Policy Options for States to Comply with the Clean Power Plan," Discussion Papers dp-15-15, Resources For the Future.
    16. Palmer, Karen & Burtraw, Dallas & Paul, Anthony & Yin, Hang, 2017. "Using Production Incentives to Avoid Emissions Leakage," Energy Economics, Elsevier, vol. 68(S1), pages 45-56.
    17. Fell, Harrison & Maniloff, Peter, 2018. "Leakage in regional environmental policy: The case of the regional greenhouse gas initiative," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 1-23.
    18. Zhang, Duan & Chen, Yihsu & Tanaka, Makoto, 2018. "On the effectiveness of tradable performance-based standards," Energy Economics, Elsevier, vol. 74(C), pages 456-469.
    19. Svetlana V. Bekareva & Ekaterina N. Meltenisova & J. G. Abo Gsysa, 2017. "Evaluation of the Role of Renewables Consumption on Economic Growth of the U.S. Regions," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 160-171.
    20. Kyle E. Binder & James W. Mjelde, 2018. "Projecting impacts of carbon dioxide emission reductions in the US electric power sector: evidence from a data-rich approach," Climatic Change, Springer, vol. 151(2), pages 143-155, November.
    21. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    22. Siddiqui, Afzal S. & Tanaka, Makoto & Chen, Yihsu, 2019. "Sustainable transmission planning in imperfectly competitive electricity industries: Balancing economic and environmental outcomes," European Journal of Operational Research, Elsevier, vol. 275(1), pages 208-223.
    23. Jeffrey C. Peters & Thomas W. Hertel, 2017. "Achieving the Clean Power Plan 2030 CO2 Target with the New Normal in Natural Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    24. Brown, Marilyn A. & Kim, Gyungwon & Smith, Alexander M. & Southworth, Katie, 2017. "Exploring the impact of energy efficiency as a carbon mitigation strategy in the U.S," Energy Policy, Elsevier, vol. 109(C), pages 249-259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fell, Harrison & Maniloff, Peter, 2018. "Leakage in regional environmental policy: The case of the regional greenhouse gas initiative," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 1-23.
    2. Kato, Shinya & Takeuchi, Kenji, 2017. "A CGE analysis of a rate-based policy for climate change mitigation," Journal of the Japanese and International Economies, Elsevier, vol. 43(C), pages 88-95.
    3. Harrison Fell & Daniel Kaffine & Daniel Steinberg, 2017. "Energy Efficiency and Emissions Intensity Standards," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 201-226.
    4. Palmer, Karen & Burtraw, Dallas & Paul, Anthony & Yin, Hang, 2017. "Using Production Incentives to Avoid Emissions Leakage," Energy Economics, Elsevier, vol. 68(S1), pages 45-56.
    5. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    6. Jonathon M. Becker, 2020. "Tradable performance standards in a dynamic context," Working Papers 2020-03, Colorado School of Mines, Division of Economics and Business.
    7. Campbell, Alrick, 2018. "Price and income elasticities of electricity demand: Evidence from Jamaica," Energy Economics, Elsevier, vol. 69(C), pages 19-32.
    8. Bento, Antonio M. & Garg, Teevrat & Kaffine, Daniel, 2018. "Emissions reductions or green booms? General equilibrium effects of a renewable portfolio standard," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 78-100.
    9. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    10. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    11. Kellogg, Ryan, 2020. "Output and attribute-based carbon regulation under uncertainty," Journal of Public Economics, Elsevier, vol. 190(C).
    12. Ibanez, Marcela & Blackman, Allen, 2015. "Environmental and Economic Impacts of Growing Certified Organic Coffee in Colombia," Discussion Papers dp-15-02, Resources For the Future.
    13. Alejandro Caparrós & Richard E. Just & David Zilberman, 2015. "Dynamic Relative Standards versus Emission Taxes in a Putty-Clay Model," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 277-308.
    14. Frans Vries & Bouwe Dijkstra & Matthew McGinty, 2014. "On Emissions Trading and Market Structure: Cap-and-Trade versus Intensity Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(4), pages 665-682, August.
    15. Bielen, David A., 2018. "Do differentiated performance standards help coal? CO2 policy in the U.S. electricity sector," Resource and Energy Economics, Elsevier, vol. 53(C), pages 79-100.
    16. Derek Lemoine, 2017. "Escape from Third-Best: Rating Emissions for Intensity Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 789-821, August.
    17. Zhang, Duan & Chen, Yihsu & Tanaka, Makoto, 2018. "On the effectiveness of tradable performance-based standards," Energy Economics, Elsevier, vol. 74(C), pages 456-469.
    18. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    19. Hélène Ollivier & Geoffrey Barrows, 2020. "Foreign Demand, Developing Country Exports, and CO2 Emissions: Firm-Level Evidence from India," PSE-Ecole d'économie de Paris (Postprint) halshs-03029861, HAL.
    20. Kiran B Krishnamurthy, Chandra & Kriström, Bengt, 2013. "A cross-country analysis of residential electricity demand in 11 OECD-countries," CERE Working Papers 2013:5, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.

    More about this item

    JEL classification:

    • H76 - Public Economics - - State and Local Government; Intergovernmental Relations - - - Other Expenditure Categories
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aejpol:v:9:y:2017:i:2:p:57-90. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.