IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-05-02.html
   My bibliography  Save this paper

The Case for Intensity Targets

Author

Listed:
  • Pizer, William

    (Resources for the Future)

Abstract

While the rest of the world has pursued absolute emissions limits for greenhouse gases, the Bush administration has proposed an alternative policy formulation based, among other things, on reducing emissions intensity—that is, emissions per dollar of real gross domestic product. Critics of this formulation have denounced the general idea of an intensity-based emissions target, along with its voluntary nature and weak targets. This raises the question of whether intensity-based emissions limits, distinct from the other features of the Bush initiative, offer a useful alternative to absolute emissions limits. This paper makes the case that they do, based on how emissions targets are framed. The argument draws on four key observations: greenhouse gas emissions will continue to rise over the near term, absolute targets emphasize zero or declining emissions growth while intensity targets do not, developing countries’ economic development is integrally tied to emissions growth for the foreseeable future, and intensity targets need not be any more complicated to administer than absolute targets.

Suggested Citation

  • Pizer, William, 2005. "The Case for Intensity Targets," RFF Working Paper Series dp-05-02, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-05-02
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-05-02.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martin I. Hoffert & Ken Caldeira & Atul K. Jain & Erik F. Haites & L. D. Danny Harvey & Seth D. Potter & Michael E. Schlesinger & Stephen H. Schneider & Robert G. Watts & Tom M. L. Wigley & Donald J. , 1998. "Energy implications of future stabilization of atmospheric CO2 content," Nature, Nature, vol. 395(6705), pages 881-884, October.
    2. Burtraw, Dallas & Evans, David, 2003. "The Evolution of NOx Control Policy for Coal-Fired Power Plants in the United States," RFF Working Paper Series dp-03-23, Resources for the Future.
    3. Pizer, William A., 2002. "Combining price and quantity controls to mitigate global climate change," Journal of Public Economics, Elsevier, vol. 85(3), pages 409-434, September.
    4. Burtraw, Dallas & Palmer, Karen L., 2003. "The Paparazzi Take a Look at a Living Legend: The SO2 Cap-and-Trade Program for Power Plants in the United States," Discussion Papers 10665, Resources for the Future.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kruger, Joseph & Pizer, William A., 2004. "The EU Emissions Trading Directive: Opportunities and Potential Pitfalls," Discussion Papers 10679, Resources for the Future.
    2. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    3. Coria, Jessica & Sterner, Thomas, 2008. "Tradable Permits in Developing Countries: Evidence from Air Pollution in Santiago, Chile," RFF Working Paper Series dp-08-51, Resources for the Future.
    4. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    5. Xiang-Yu Wang & Bao-Jun Tang, 2018. "Review of comparative studies on market mechanisms for carbon emission reduction: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1141-1162, December.
    6. Jonathan M. Lee, 2015. "The Impact of Heterogeneous NOx Regulations on Distributed Electricity Generation in U.S. Manufacturing," Working Papers 15-12, Center for Economic Studies, U.S. Census Bureau.
    7. Joseph E. Aldy & William A. Pizer, 2009. "Issues in Designing U.S. Climate Change Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 179-210.
    8. Heijmans, Roweno J.R.K. & Engström, Max, 2024. "Time Horizons and Emissions Trading," Discussion Papers 2024/2, Norwegian School of Economics, Department of Business and Management Science.
    9. Chao-Ning Liao, 2009. "Technology adoption decisions under a mixed regulatory system of tradable permits and air pollution fees for the control of Total Suspended Particulates in Taiwan," Journal of Regulatory Economics, Springer, vol. 35(2), pages 135-153, April.
    10. DeCanio, Stephen J. & Fremstad, Anders, 2011. "Economic feasibility of the path to zero net carbon emissions," Energy Policy, Elsevier, vol. 39(3), pages 1144-1153, March.
    11. Halvor Briseid Storrøsten, 2012. "Prices vs. quantities: Technology choice, uncertainty and welfare," Discussion Papers 677, Statistics Norway, Research Department.
    12. Liao, Chao-Ning, 2007. "Modelling a mixed system of air pollution fee and tradable permits for controlling nitrogen oxide: a case study of Taiwan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 1-16.
    13. Webster, Mort & Sue Wing, Ian & Jakobovits, Lisa, 2010. "Second-best instruments for near-term climate policy: Intensity targets vs. the safety valve," Journal of Environmental Economics and Management, Elsevier, vol. 59(3), pages 250-259, May.
    14. Bryan K. Mignone & Thomas Alfstad & Aaron Bergman & Kenneth Dubin & Richard Duke & Paul Friley & Andrew Martinez & Matthew Mowers & Karen Palmer & Anthony Paul & Sharon Showalter & Daniel Steinberg & , 2012. "Cost-effectiveness and Economic Incidence of a Clean Energy Standard," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 3).
    15. William A. Pizer & Brian C. Prest, 2020. "Prices versus Quantities with Policy Updating," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(3), pages 483-518.
    16. Lehmann, Paul, 2010. "Combining emissions trading and emissions taxes in a multi-objective world," UFZ Discussion Papers 4/2010, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    17. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    18. Wesseh, Presley K. & Lin, Boqiang, 2018. "Optimal carbon taxes for China and implications for power generation, welfare, and the environment," Energy Policy, Elsevier, vol. 118(C), pages 1-8.
    19. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    20. Valentina Bosetti & Laurent Gilotte, 2005. "Carbon Capture and Sequestration: How Much Does this Uncertain Option Affect Near-Term Policy Choices?," Working Papers 2005.86, Fondazione Eni Enrico Mattei.

    More about this item

    Keywords

    carbon; climate; policy; intensity; global warming;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-05-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.