IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v57y2019icp18-35.html
   My bibliography  Save this article

The impact of a feed-in tariff on wind power development in Germany

Author

Listed:
  • Hitaj, Claudia
  • Löschel, Andreas

Abstract

We estimate the impact of a feed-in tariff (FIT) on wind power investment and emission reductions in Germany from 1996–2010. We find that a 1 €-cent/kWh increase in the FIT rate would increase additions to capacity by 796 MW on average per year from 1996–2010. In addition, we find that proximity to existing transmission lines became less of a consideration in determining the location of new wind power plants, after a Renewable Energy Law (EEG) provision shifted the cost of transmission system upgrades from wind power developers to grid operators. The lack of a signal on scarcity of transmission capacity may have contributed to a distribution of wind power plants that makes suboptimal use of existing infrastructure, necessitating investment in new transmission corridors. In 2000, the EEG also replaced the uniform feed-in tariff with one linked to wind power potential, such that more windy locations received a lower incentive per unit of output, in order to contain costs and spread investment across the country. We compare the wind-dependent EEG incentive with a counterfactual scenario, in which a uniform incentive is offered, and find that the EEG is slightly more cost-effective, achieving about 4% greater reductions in power sector CO2, SOx, NOx, and PM10 emissions.

Suggested Citation

  • Hitaj, Claudia & Löschel, Andreas, 2019. "The impact of a feed-in tariff on wind power development in Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 18-35.
  • Handle: RePEc:eee:resene:v:57:y:2019:i:c:p:18-35
    DOI: 10.1016/j.reseneeco.2018.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765517304165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2018.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    2. Ritzenhofen, Ingmar & Spinler, Stefan, 2016. "Optimal design of feed-in-tariffs to stimulate renewable energy investments under regulatory uncertainty — A real options analysis," Energy Economics, Elsevier, vol. 53(C), pages 76-89.
    3. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    4. Hitaj, Claudia, 2015. "Location matters: The impact of renewable power on transmission congestion and emissions," Energy Policy, Elsevier, vol. 86(C), pages 1-16.
    5. Grau, Thilo, 2014. "Responsive feed-in tariff adjustment to dynamic technology development," Energy Economics, Elsevier, vol. 44(C), pages 36-46.
    6. Kaltenegger, Oliver & Löschel, Andreas & Baikowski, Martin & Lingens, Jörg, 2017. "Energy costs in Germany and Europe: An assessment based on a (total real unit) energy cost accounting framework," Energy Policy, Elsevier, vol. 104(C), pages 419-430.
    7. Ashley Langer & Derek Lemoine, 2022. "Designing Dynamic Subsidies to Spur Adoption of New Technologies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(6), pages 1197-1234.
    8. Hitaj, Claudia, 2013. "Wind power development in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 394-410.
    9. Traber, Thure & Kemfert, Claudia, 2011. "Gone with the wind? -- Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply," Energy Economics, Elsevier, vol. 33(2), pages 249-256, March.
    10. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    11. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    12. Phillips, Benjamin R. & Middleton, Richard S., 2012. "SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission," Energy Policy, Elsevier, vol. 43(C), pages 291-302.
    13. Weigt, Hannes & Hirschhausen, Christian von, 2008. "Price formation and market power in the German wholesale electricity market in 2006," Energy Policy, Elsevier, vol. 36(11), pages 4227-4234, November.
    14. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    15. Sun, Peng & Nie, Pu-yan, 2015. "A comparative study of feed-in tariff and renewable portfolio standard policy in renewable energy industry," Renewable Energy, Elsevier, vol. 74(C), pages 255-262.
    16. Schmidt, J. & Lehecka, G. & Gass, V. & Schmid, E., 2013. "Where the wind blows: Assessing the effect of fixed and premium based feed-in tariffs on the spatial diversification of wind turbines," Energy Economics, Elsevier, vol. 40(C), pages 269-276.
    17. Christian von Hirschhausen, 2014. "The German Energiewend - An Introduction," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    18. Smith Stegen, Karen & Seel, Matthias, 2013. "The winds of change: How wind firms assess Germany's energy transition," Energy Policy, Elsevier, vol. 61(C), pages 1481-1489.
    19. Kwon, Tae-hyeong, 2015. "Rent and rent-seeking in renewable energy support policies: Feed-in tariff vs. renewable portfolio standard," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 676-681.
    20. Lesser, Jonathan A. & Su, Xuejuan, 2008. "Design of an economically efficient feed-in tariff structure for renewable energy development," Energy Policy, Elsevier, vol. 36(3), pages 981-990, March.
    21. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    22. Thure Traber & Claudia Kemfert, 2009. "Impacts of the German Support for Renewable Energy on Electricity Prices, Emissions, and Firms," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 155-178.
    23. repec:aen:journl:eeep3_2_01intro is not listed on IDEAS
    24. Nicolini, Marcella & Tavoni, Massimo, 2017. "Are renewable energy subsidies effective? Evidence from Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 412-423.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).
    2. García-Álvarez, María Teresa & Cabeza-García, Laura & Soares, Isabel, 2017. "Analysis of the promotion of onshore wind energy in the EU: Feed-in tariff or renewable portfolio standard?," Renewable Energy, Elsevier, vol. 111(C), pages 256-264.
    3. Shen, Neng & Deng, Rumeng & Liao, Haolan & Shevchuk, Oleksandr, 2020. "Mapping renewable energy subsidy policy research published from 1997 to 2018: A scientometric review," Utilities Policy, Elsevier, vol. 64(C).
    4. Buckman, Greg & Sibley, Jon & Ward, Megan, 2019. "The large-scale feed-in tariff reverse auction scheme in the Australian Capital Territory 2012, to 2016," Renewable Energy, Elsevier, vol. 132(C), pages 176-185.
    5. Youhyun Lee & Inseok Seo, 2019. "Sustainability of a Policy Instrument: Rethinking the Renewable Portfolio Standard in South Korea," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    6. Zipp, Alexander, 2017. "The marketability of variable renewable energy in liberalized electricity markets – An empirical analysis," Renewable Energy, Elsevier, vol. 113(C), pages 1111-1121.
    7. Burtt, D. & Dargusch, P., 2015. "The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions," Applied Energy, Elsevier, vol. 148(C), pages 439-448.
    8. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    9. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    10. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    11. Wolf-Peter Schill & Claudia Kemfert, 2011. "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-88.
    12. Liu, Ying & Feng, Chao, 2023. "Promoting renewable energy through national energy legislation," Energy Economics, Elsevier, vol. 118(C).
    13. Carfora, A. & Pansini, R.V. & Scandurra, G., 2021. "The role of environmental taxes and public policies in supporting RES investments in EU countries: Barriers and mimicking effects," Energy Policy, Elsevier, vol. 149(C).
    14. Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2015. "Retail price effects of feed-in tariff regulation," Energy Economics, Elsevier, vol. 51(C), pages 157-165.
    15. Punda, Luka & Capuder, Tomislav & Pandžić, Hrvoje & Delimar, Marko, 2017. "Integration of renewable energy sources in southeast Europe: A review of incentive mechanisms and feasibility of investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 77-88.
    16. Gupta, Dipti & Das, Abhiman & Garg, Amit, 2019. "Financial support vis-à-vis share of wind generation: Is there an inflection point?," Energy, Elsevier, vol. 181(C), pages 1064-1074.
    17. Wiser, Ryan & Bolinger, Mark & Heath, Garvin & Keyser, David & Lantz, Eric & Macknick, Jordan & Mai, Trieu & Millstein, Dev, 2016. "Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts," Applied Energy, Elsevier, vol. 179(C), pages 146-158.
    18. Mulder, Machiel & Scholtens, Bert, 2016. "A plant-level analysis of the spill-over effects of the German Energiewende," Applied Energy, Elsevier, vol. 183(C), pages 1259-1271.
    19. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2018. "Key determinants of wind energy growth in India: Analysis of policy and non-policy factors," Energy Policy, Elsevier, vol. 122(C), pages 622-638.
    20. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.

    More about this item

    Keywords

    Wind power; Feed-in tariff; Emissions; Electricity transmission;
    All these keywords.

    JEL classification:

    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:57:y:2019:i:c:p:18-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.