IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v66y2013i3p688-707.html
   My bibliography  Save this article

Renewable electricity policies, heterogeneity, and cost effectiveness

Author

Listed:
  • Fell, Harrison
  • Linn, Joshua

Abstract

Renewable electricity policies promote investment in renewable electricity generators and have become increasingly common around the world. Because of intermittency and the composition of other generators in the power system, the value of certain renewable – particularly wind and solar – varies across locations and technologies. This paper investigates the implications of this heterogeneity for the cost effectiveness of renewable electricity policies. A simple model of the power system shows that renewable electricity policies cause different investment mixes. Policies also differ according to their effect on electricity prices, and both factors cause the cost effectiveness to vary across policies. We use a detailed, long-run planning model that accounts for intermittency on an hourly basis to compare the cost effectiveness for a range of policies and alternative parameter assumptions. The differences in cost effectiveness are economically significant, where broader policies, such as an emissions price, outperform renewable electricity policies.

Suggested Citation

  • Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
  • Handle: RePEc:eee:jeeman:v:66:y:2013:i:3:p:688-707
    DOI: 10.1016/j.jeem.2013.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069613000442
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daniel T. Kaffine & Brannin J. McBee & Jozef Lieskovsky, 2012. "Emissions savings from wind power generation: Evidence from Texas, California and the Upper Midwest," Working Papers 2012-03, Colorado School of Mines, Division of Economics and Business.
    2. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    3. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    4. Erin T. Mansur, 2008. "Measuring Welfare in Restructured Electricity Markets," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 369-386, May.
    5. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    6. Paul, Anthony & Myers, Erica & Palmer, Karen, 2009. "A Partial Adjustment Model of U.S. Electricity Demand by Region, Season, and Sector," Discussion Papers dp-08-50, Resources For the Future.
    7. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    8. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    9. Barnes, Roberta & Gillingham, Robert & Hagemann, Robert, 1981. "The Short-run Residential Demand for Electricity," The Review of Economics and Statistics, MIT Press, vol. 63(4), pages 541-552, November.
    10. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2011. "Intermittency and the Value of Renewable Energy," NBER Working Papers 17086, National Bureau of Economic Research, Inc.
    11. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 853-883.
    12. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    13. Castillo, Anya & Linn, Joshua, 2011. "Incentives of carbon dioxide regulation for investment in low-carbon electricity technologies in Texas," Energy Policy, Elsevier, vol. 39(3), pages 1831-1844, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Electricity; Climate policy; Cost effectiveness; Intermittency; Wind and solar;

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:66:y:2013:i:3:p:688-707. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.