The case of 100% electrification of domestic heat in Great Britain
Author
Abstract
Suggested Citation
Note: mf705, kc335, dmr40
Download full text from publisher
Other versions of this item:
- Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
References listed on IDEAS
- Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020.
"Heating with wind: Economics of heat pumps and variable renewables,"
Energy Economics, Elsevier, vol. 92(C).
- Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," EconStor Preprints 206688, ZBW - Leibniz Information Centre for Economics, revised 2020.
- Heinen, Steve & Burke, Daniel & O'Malley, Mark, 2016. "Electricity, gas, heat integration via residential hybrid heating technologies – An investment model assessment," Energy, Elsevier, vol. 109(C), pages 906-919.
- Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
- Connor, Peter M. & Xie, Lei & Lowes, Richard & Britton, Jessica & Richardson, Thomas, 2015. "The development of renewable heating policy in the United Kingdom," Renewable Energy, Elsevier, vol. 75(C), pages 733-744.
- Rattner, Alexander S. & Garimella, Srinivas, 2011. "Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA," Energy, Elsevier, vol. 36(10), pages 6172-6183.
- Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.
- Clara F. Heuberger & Iain Staffell & Nilay Shah & Niall Mac Dowell, 2018. "Impact of myopic decision-making and disruptive events in power systems planning," Nature Energy, Nature, vol. 3(8), pages 634-640, August.
- Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
- Love, Jenny & Smith, Andrew Z.P. & Watson, Stephen & Oikonomou, Eleni & Summerfield, Alex & Gleeson, Colin & Biddulph, Phillip & Chiu, Lai Fong & Wingfield, Jez & Martin, Chris & Stone, Andy & Lowe, R, 2017. "The addition of heat pump electricity load profiles to GB electricity demand: Evidence from a heat pump field trial," Applied Energy, Elsevier, vol. 204(C), pages 332-342.
- Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
- McKenna, R.C. & Norman, J.B., 2010. "Spatial modelling of industrial heat loads and recovery potentials in the UK," Energy Policy, Elsevier, vol. 38(10), pages 5878-5891, October.
- Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
- Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
- Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
- Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. "The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform," Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
- Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
- Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
- Mouli-Castillo, Julien & Heinemann, Niklas & Edlmann, Katriona, 2021. "Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study," Applied Energy, Elsevier, vol. 283(C).
- Parrish, Bryony & Hielscher, Sabine & Foxon, Timothy J., 2021. "Consumers or users? The impact of user learning about smart hybrid heat pumps on policy trajectories for heat decarbonisation," Energy Policy, Elsevier, vol. 148(PB).
- Bach, Bjarne & Werling, Jesper & Ommen, Torben & Münster, Marie & Morales, Juan M. & Elmegaard, Brian, 2016. "Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen," Energy, Elsevier, vol. 107(C), pages 321-334.
- Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
- Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
- Lara, Cristiana L. & Mallapragada, Dharik S. & Papageorgiou, Dimitri J. & Venkatesh, Aranya & Grossmann, Ignacio E., 2018. "Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1037-1054.
- Wolf-Peter Schill & Michael Pahle & Christian Gambardella, 2017. "Start-up costs of thermal power plants in markets with increasing shares of variable renewable generation," Nature Energy, Nature, vol. 2(6), pages 1-6, June.
- Dodds, Paul E. & McDowall, Will, 2013. "The future of the UK gas network," Energy Policy, Elsevier, vol. 60(C), pages 305-316.
- Jason Chilvers & Rob Bellamy & Helen Pallett & Tom Hargreaves, 2021. "Publisher Correction: A systemic approach to mapping participation with low-carbon energy transitions," Nature Energy, Nature, vol. 6(7), pages 764-764, July.
- Dodds, Paul E., 2014. "Integrating housing stock and energy system models as a strategy to improve heat decarbonisation assessments," Applied Energy, Elsevier, vol. 132(C), pages 358-369.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Andreas Bloess & Wolf-Peter Schill & Alexander Zerrahn, 2017. "Power-to-Heat for Renewable Energy Integration: Technologies, Modeling Approaches, and Flexibility Potentials," Discussion Papers of DIW Berlin 1677, DIW Berlin, German Institute for Economic Research.
- Thomaßen, Georg & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo, 2021. "The decarbonisation of the EU heating sector through electrification: A parametric analysis," Energy Policy, Elsevier, vol. 148(PA).
- Eyre, Nick & Baruah, Pranab, 2015. "Uncertainties in future energy demand in UK residential heating," Energy Policy, Elsevier, vol. 87(C), pages 641-653.
- Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
- Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
- Jalil-Vega, F. & Hawkes, A.D., 2018. "Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs," Applied Energy, Elsevier, vol. 210(C), pages 1051-1072.
- Robert Gross & Richard Hanna, 2019. "Path dependency in provision of domestic heating," Nature Energy, Nature, vol. 4(5), pages 358-364, May.
- Joeri Rogelj & Gunnar Luderer & Robert C. Pietzcker & Elmar Kriegler & Michiel Schaeffer & Volker Krey & Keywan Riahi, 2015. "Energy system transformations for limiting end-of-century warming to below 1.5 °C," Nature Climate Change, Nature, vol. 5(6), pages 519-527, June.
- Nestor A. Sepulveda & Jesse D. Jenkins & Aurora Edington & Dharik S. Mallapragada & Richard K. Lester, 2021. "The design space for long-duration energy storage in decarbonized power systems," Nature Energy, Nature, vol. 6(5), pages 506-516, May.
- Jason Chilvers & Rob Bellamy & Helen Pallett & Tom Hargreaves, 2021. "A systemic approach to mapping participation with low-carbon energy transitions," Nature Energy, Nature, vol. 6(3), pages 250-259, March.
- Barton, John & Huang, Sikai & Infield, David & Leach, Matthew & Ogunkunle, Damiete & Torriti, Jacopo & Thomson, Murray, 2013. "The evolution of electricity demand and the role for demand side participation, in buildings and transport," Energy Policy, Elsevier, vol. 52(C), pages 85-102.
- Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
- Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
- Zhang, Xi & Strbac, Goran & Teng, Fei & Djapic, Predrag, 2018. "Economic assessment of alternative heat decarbonisation strategies through coordinated operation with electricity system – UK case study," Applied Energy, Elsevier, vol. 222(C), pages 79-91.
- Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
- Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
- Wang, Zhikun & Crawley, Jenny & Li, Francis G.N. & Lowe, Robert, 2020. "Sizing of district heating systems based on smart meter data: Quantifying the aggregated domestic energy demand and demand diversity in the UK," Energy, Elsevier, vol. 193(C).
- Heuberger, Clara F. & Bains, Praveen K. & Mac Dowell, Niall, 2020. "The EV-olution of the power system: A spatio-temporal optimisation model to investigate the impact of electric vehicle deployment," Applied Energy, Elsevier, vol. 257(C).
- Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
- Quiggin, Daniel & Buswell, Richard, 2016. "The implications of heat electrification on national electrical supply-demand balance under published 2050 energy scenarios," Energy, Elsevier, vol. 98(C), pages 253-270.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020.
"Heating with wind: Economics of heat pumps and variable renewables,"
Energy Economics, Elsevier, vol. 92(C).
- Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," EconStor Preprints 206688, ZBW - Leibniz Information Centre for Economics, revised 2020.
- Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018.
"Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 212, pages 1611-1626.
- Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
- Andreas Bloess & Wolf-Peter Schill & Alexander Zerrahn, 2017. "Power-to-Heat for Renewable Energy Integration: Technologies, Modeling Approaches, and Flexibility Potentials," Discussion Papers of DIW Berlin 1677, DIW Berlin, German Institute for Economic Research.
- Oluleye, Gbemi & Allison, John & Hawker, Graeme & Kelly, Nick & Hawkes, Adam D., 2018. "A two-step optimization model for quantifying the flexibility potential of power-to-heat systems in dwellings," Applied Energy, Elsevier, vol. 228(C), pages 215-228.
- Ma, Huan & Sun, Qinghan & Chen, Lei & Chen, Qun & Zhao, Tian & He, Kelun & Xu, Fei & Min, Yong & Wang, Shunjiang & Zhou, Guiping, 2023. "Cogeneration transition for energy system decarbonization: From basic to flexible and complementary multi-energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
- Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
- de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020.
"Variable time-step: A method for improving computational tractability for energy system models with long-term storage,"
Energy, Elsevier, vol. 213(C).
- Paul de Guibert & Behrang Shirizadeh & Philippe Quirion, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Post-Print hal-03100309, HAL.
- Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
- Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.
- Topi Rasku & Juha Kiviluoma, 2018. "A Comparison of Widespread Flexible Residential Electric Heating and Energy Efficiency in a Future Nordic Power System," Energies, MDPI, vol. 12(1), pages 1-27, December.
- Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
- Daniel Scamman & Baltazar Solano-Rodríguez & Steve Pye & Lai Fong Chiu & Andrew Z. P. Smith & Tiziano Gallo Cassarino & Mark Barrett & Robert Lowe, 2020. "Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective," Energies, MDPI, vol. 13(8), pages 1-28, April.
- Thomaßen, Georg & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo, 2021. "The decarbonisation of the EU heating sector through electrification: A parametric analysis," Energy Policy, Elsevier, vol. 148(PA).
- Eggimann, Sven & Usher, Will & Eyre, Nick & Hall, Jim W., 2020. "How weather affects energy demand variability in the transition towards sustainable heating," Energy, Elsevier, vol. 195(C).
- Reyseliani, Nadhilah & Purwanto, Widodo Wahyu, 2021. "Pathway towards 100% renewable energy in Indonesia power system by 2050," Renewable Energy, Elsevier, vol. 176(C), pages 305-321.
- Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
- Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
- Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
More about this item
Keywords
heat electrification; energy systems optimisation; carbon capture and storage; heat pumps; unit commitment; investment planning;All these keywords.
JEL classification:
- C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
- L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
- Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
- Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2022-02-14 (Energy Economics)
- NEP-ENV-2022-02-14 (Environmental Economics)
- NEP-HIS-2022-02-14 (Business, Economic and Financial History)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2210. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.