IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v258y2020ics0306261919317660.html
   My bibliography  Save this article

Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard

Author

Listed:
  • Ringkjøb, Hans-Kristian
  • Haugan, Peter M.
  • Nybø, Astrid

Abstract

As transitioning away from fossil fuels to renewable energy sources comes on the agenda for a range of energy systems, energy modelling tools can provide useful insights. If large parts of the energy system turns out to be based on variable renewables, an accurate representation of their short-term variability in such models is crucial. In this paper, we have developed a stochastic long-term energy model and applied it to an isolated Arctic settlement as a challenging and realistic test case. Our findings suggest that the stochastic modelling approach is critical in particular for studies of remote Arctic energy systems. Furthermore, the results from a case study of the Norwegian settlement of Longyearbyen, suggest that transitioning to a system based on renewable energy sources is feasible. We recommend that a solution based mainly on renewable power generation, but also including energy storage, import of hydrogen and adequate back-up capacity is taken into consideration when planning the future of remote Arctic settlements.

Suggested Citation

  • Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317660
    DOI: 10.1016/j.apenergy.2019.114079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segurado, Raquel & Krajacic, Goran & Duic, Neven & Alves, Luís, 2011. "Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde," Applied Energy, Elsevier, vol. 88(2), pages 466-472, February.
    2. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    3. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    4. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    5. Stephan Nagl, Michaela Fursch, and Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    7. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    8. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    9. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    10. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    11. van der Weijde, Adriaan Hendrik & Hobbs, Benjamin F., 2012. "The economics of planning electricity transmission to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty," Energy Economics, Elsevier, vol. 34(6), pages 2089-2101.
    12. Tin, Tina & Sovacool, Benjamin K. & Blake, David & Magill, Peter & El Naggar, Saad & Lidstrom, Sven & Ishizawa, Kenji & Berte, Johan, 2010. "Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica," Renewable Energy, Elsevier, vol. 35(8), pages 1715-1723.
    13. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    14. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    15. Tsekouras, Georgios & Koutsoyiannis, Demetris, 2014. "Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy," Renewable Energy, Elsevier, vol. 63(C), pages 624-633.
    16. Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
    17. Chade, Daniel & Miklis, Tomasz & Dvorak, David, 2015. "Feasibility study of wind-to-hydrogen system for Arctic remote locations – Grimsey island case study," Renewable Energy, Elsevier, vol. 76(C), pages 204-211.
    18. Kostiantyn Turcheniuk & Dmitry Bondarev & Vinod Singhal & Gleb Yushin, 2018. "Ten years left to redesign lithium-ion batteries," Nature, Nature, vol. 559(7715), pages 467-470, July.
    19. Katsaprakakis, Dimitris Al. & Papadakis, Nikos & Kozirakis, George & Minadakis, Yiannis & Christakis, Dimitris & Kondaxakis, Konstantinos, 2009. "Electricity supply on the island of Dia based on renewable energy sources (R.E.S.)," Applied Energy, Elsevier, vol. 86(4), pages 516-527, April.
    20. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    21. Seljom, Pernille & Tomasgard, Asgeir, 2015. "Short-term uncertainty in long-term energy system models — A case study of wind power in Denmark," Energy Economics, Elsevier, vol. 49(C), pages 157-167.
    22. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    23. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.
    24. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.
    25. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    26. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    27. Michal Kaut & Kjetil Midthun & Adrian Werner & Asgeir Tomasgard & Lars Hellemo & Marte Fodstad, 2014. "Multi-horizon stochastic programming," Computational Management Science, Springer, vol. 11(1), pages 179-193, January.
    28. Marianne Zeyringer & James Price & Birgit Fais & Pei-Hao Li & Ed Sharp, 2018. "Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather," Nature Energy, Nature, vol. 3(5), pages 395-403, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    2. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    3. Magnus de Witt & Ágúst Valfells & Joan Nymand Larsen & Hlynur Stefánsson, 2022. "Simulation of Pathways toward Low-Carbon Electricity Generation in the Arctic," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    4. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Kamani, D. & Ardehali, M.M., 2023. "Long-term forecast of electrical energy consumption with considerations for solar and wind energy sources," Energy, Elsevier, vol. 268(C).
    6. Miguel Cañas-Carretón & Miguel Carrión & Florin Iov, 2021. "Towards Renewable-Dominated Power Systems Considering Long-Term Uncertainties: Case Study of Las Palmas," Energies, MDPI, vol. 14(11), pages 1-38, June.
    7. Jåstad, Eirik Ogner & Trotter, Ian M. & Bolkesjø, Torjus Folsland, 2022. "Long term power prices and renewable energy market values in Norway – A probabilistic approach," Energy Economics, Elsevier, vol. 112(C).
    8. Seljom, Pernille & Rosenberg, Eva & Schäffer, Linn Emelie & Fodstad, Marte, 2020. "Bidirectional linkage between a long-term energy system and a short-term power market model," Energy, Elsevier, vol. 198(C).
    9. Mafalda M. Miranda & Jasmin Raymond & Chrystel Dezayes, 2020. "Uncertainty and Risk Evaluation of Deep Geothermal Energy Source for Heat Production and Electricity Generation in Remote Northern Regions," Energies, MDPI, vol. 13(16), pages 1-35, August.
    10. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Seljom, Pernille & Lind, Arne & Wagner, Fabian & Mesfun, Sennai, 2020. "Short-term solar and wind variability in long-term energy system models - A European case study," Energy, Elsevier, vol. 209(C).
    2. Backe, Stian & Ahang, Mohammadreza & Tomasgard, Asgeir, 2021. "Stable stochastic capacity expansion with variable renewables: Comparing moment matching and stratified scenario generation sampling," Applied Energy, Elsevier, vol. 302(C).
    3. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    4. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    6. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
    9. Charlotte Senkpiel & Audrey Dobbins & Christina Kockel & Jan Steinbach & Ulrich Fahl & Farina Wille & Joachim Globisch & Sandra Wassermann & Bert Droste-Franke & Wolfgang Hauser & Claudia Hofer & Lars, 2020. "Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches," Energies, MDPI, vol. 13(18), pages 1-30, September.
    10. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    11. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    12. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    13. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    14. Abuzayed, Anas & Hartmann, Niklas, 2022. "MyPyPSA-Ger: Introducing CO2 taxes on a multi-regional myopic roadmap of the German electricity system towards achieving the 1.5 °C target by 2050," Applied Energy, Elsevier, vol. 310(C).
    15. Maximilian Parzen & Fabian Neumann & Addrian H. Van Der Weijde & Daniel Friedrich & Aristides Kiprakis, 2021. "Beyond cost reduction: Improving the value of energy storage in electricity systems," Papers 2101.10092, arXiv.org, revised Jul 2022.
    16. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2022. "Electrolysis as a Flexibility Resource on Energy Islands: The Case of the North Sea," Working Papers 13-2022, Copenhagen Business School, Department of Economics.
    17. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Daniel Scamman & Baltazar Solano-Rodríguez & Steve Pye & Lai Fong Chiu & Andrew Z. P. Smith & Tiziano Gallo Cassarino & Mark Barrett & Robert Lowe, 2020. "Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective," Energies, MDPI, vol. 13(8), pages 1-28, April.
    20. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.