IDEAS home Printed from
   My bibliography  Save this article

The impact of future energy demand on renewable energy production – Case of Norway


  • Rosenberg, Eva
  • Lind, Arne
  • Espegren, Kari Aamodt


Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export.

Suggested Citation

  • Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
  • Handle: RePEc:eee:energy:v:61:y:2013:i:c:p:419-431
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Budzianowski, Wojciech M., 2012. "Target for national carbon intensity of energy by 2050: A case study of Poland's energy system," Energy, Elsevier, vol. 46(1), pages 575-581.
    2. Oikonomou, V. & Flamos, A. & Gargiulo, M. & Giannakidis, G. & Kanudia, A. & Spijker, E. & Grafakos, S., 2011. "Linking least-cost energy system costs models with MCA: An assessment of the EU renewable energy targets and supporting policies," Energy Policy, Elsevier, vol. 39(5), pages 2786-2799, May.
    3. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    4. Labriet, Maryse & Cabal, Helena & Lechón, Yolanda & Giannakidis, George & Kanudia, Amit, 2010. "The implementation of the EU renewable directive in Spain. Strategies and challenges," Energy Policy, Elsevier, vol. 38(5), pages 2272-2281, May.
    5. Taseska, Verica & Markovska, Natasa & Callaway, John M., 2012. "Evaluation of climate change impacts on energy demand," Energy, Elsevier, vol. 48(1), pages 88-95.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    7. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    8. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
    9. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    10. Kesicki, Fabian & Anandarajah, Gabrial, 2011. "The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7224-7233.
    11. Seljom, Pernille & Rosenberg, Eva & Fidje, Audun & Haugen, Jan Erik & Meir, Michaela & Rekstad, John & Jarlset, Thore, 2011. "Modelling the effects of climate change on the energy system—A case study of Norway," Energy Policy, Elsevier, vol. 39(11), pages 7310-7321.
    12. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    13. Strachan, Neil, 2011. "Business-as-Unusual: Existing policies in energy model baselines," Energy Economics, Elsevier, vol. 33(2), pages 153-160, March.
    14. Hull, David & Ó Gallachóir, Brian P. & Walker, Neil, 2009. "Development of a modelling framework in response to new European energy-efficiency regulatory obligations: The Irish experience," Energy Policy, Elsevier, vol. 37(12), pages 5363-5375, December.
    15. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    16. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.
    17. Lind, Arne & Rosenberg, Eva & Seljom, Pernille & Espegren, Kari & Fidje, Audun & Lindberg, Karen, 2013. "Analysis of the EU renewable energy directive by a techno-economic optimisation model," Energy Policy, Elsevier, vol. 60(C), pages 364-377.
    18. Chang, Yusang & Lee, Jinsoo & Yoon, Hyerim, 2012. "Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook," Energy Policy, Elsevier, vol. 50(C), pages 154-160.
    19. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ayyaru, Sivasankaran & Dharmalingam, Sangeetha, 2015. "A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application," Energy, Elsevier, vol. 88(C), pages 202-208.
    2. Janhunen, Sari & Hujala, Maija & Pätäri, Satu, 2014. "Owners of second homes, locals and their attitudes towards future rural wind farm," Energy Policy, Elsevier, vol. 73(C), pages 450-460.
    3. Zeiner-Gundersen, Dag Herman, 2014. "A vertical axis hydrodynamic turbine with flexible foils, passive pitching, and low tip speed ratio achieves near constant RPM," Energy, Elsevier, vol. 77(C), pages 297-304.
    4. repec:gam:jeners:v:11:y:2017:i:1:p:78-:d:124811 is not listed on IDEAS
    5. Zeiner-Gundersen, Dag Herman, 2015. "A novel flexible foil vertical axis turbine for river, ocean, and tidal applications," Applied Energy, Elsevier, vol. 151(C), pages 60-66.
    6. Assefa Hagos, Dejene & Gebremedhin, Alemayehu & Folsland Bolkesjø, Torjus, 2015. "Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway," Energy Policy, Elsevier, vol. 85(C), pages 386-396.
    7. Bjørnebye, Henrik & Hagem, Cathrine & Lind, Arne, 2018. "Optimal location of renewable power," Energy, Elsevier, vol. 147(C), pages 1203-1215.
    8. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Zethraeus, Björn, 2014. "Towards a flexible energy system – A case study for Inland Norway," Applied Energy, Elsevier, vol. 130(C), pages 41-50.
    9. Al-Mansour, Fouad & Sucic, Boris & Pusnik, Matevz, 2014. "Challenges and prospects of electricity production from renewable energy sources in Slovenia," Energy, Elsevier, vol. 77(C), pages 73-81.
    10. Seljom, Pernille & Lindberg, Karen Byskov & Tomasgard, Asgeir & Doorman, Gerard & Sartori, Igor, 2017. "The impact of Zero Energy Buildings on the Scandinavian energy system," Energy, Elsevier, vol. 118(C), pages 284-296.
    11. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    12. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    13. Rečka, L. & Ščasný, M., 2016. "Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050," Energy, Elsevier, vol. 108(C), pages 19-33.
    14. Huang, Yongfu, 2014. "Drivers of rising global energy demand: The importance of spatial lag and error dependence," Energy, Elsevier, vol. 76(C), pages 254-263.
    15. repec:eee:rensus:v:96:y:2018:i:c:p:440-459 is not listed on IDEAS
    16. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Bolkesjø, Torjus Folsland, 2017. "The prospects of bioenergy in the future energy system of Inland Norway," Energy, Elsevier, vol. 121(C), pages 78-91.
    17. Klöckner, Christian A. & Nayum, Alim, 2017. "Psychological and structural facilitators and barriers to energy upgrades of the privately owned building stock," Energy, Elsevier, vol. 140(P1), pages 1005-1017.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:61:y:2013:i:c:p:419-431. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.