IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v61y2013icp419-431.html
   My bibliography  Save this article

The impact of future energy demand on renewable energy production – Case of Norway

Author

Listed:
  • Rosenberg, Eva
  • Lind, Arne
  • Espegren, Kari Aamodt

Abstract

Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export.

Suggested Citation

  • Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
  • Handle: RePEc:eee:energy:v:61:y:2013:i:c:p:419-431
    DOI: 10.1016/j.energy.2013.08.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Budzianowski, Wojciech M., 2012. "Target for national carbon intensity of energy by 2050: A case study of Poland's energy system," Energy, Elsevier, vol. 46(1), pages 575-581.
    2. Oikonomou, V. & Flamos, A. & Gargiulo, M. & Giannakidis, G. & Kanudia, A. & Spijker, E. & Grafakos, S., 2011. "Linking least-cost energy system costs models with MCA: An assessment of the EU renewable energy targets and supporting policies," Energy Policy, Elsevier, vol. 39(5), pages 2786-2799, May.
    3. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    4. Labriet, Maryse & Cabal, Helena & Lechón, Yolanda & Giannakidis, George & Kanudia, Amit, 2010. "The implementation of the EU renewable directive in Spain. Strategies and challenges," Energy Policy, Elsevier, vol. 38(5), pages 2272-2281, May.
    5. Taseska, Verica & Markovska, Natasa & Callaway, John M., 2012. "Evaluation of climate change impacts on energy demand," Energy, Elsevier, vol. 48(1), pages 88-95.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    7. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    8. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
    9. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    10. Kesicki, Fabian & Anandarajah, Gabrial, 2011. "The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis," Energy Policy, Elsevier, vol. 39(11), pages 7224-7233.
    11. Seljom, Pernille & Rosenberg, Eva & Fidje, Audun & Haugen, Jan Erik & Meir, Michaela & Rekstad, John & Jarlset, Thore, 2011. "Modelling the effects of climate change on the energy system—A case study of Norway," Energy Policy, Elsevier, vol. 39(11), pages 7310-7321.
    12. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    13. Strachan, Neil, 2011. "Business-as-Unusual: Existing policies in energy model baselines," Energy Economics, Elsevier, vol. 33(2), pages 153-160, March.
    14. Hull, David & Ó Gallachóir, Brian P. & Walker, Neil, 2009. "Development of a modelling framework in response to new European energy-efficiency regulatory obligations: The Irish experience," Energy Policy, Elsevier, vol. 37(12), pages 5363-5375, December.
    15. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    16. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.
    17. Lind, Arne & Rosenberg, Eva & Seljom, Pernille & Espegren, Kari & Fidje, Audun & Lindberg, Karen, 2013. "Analysis of the EU renewable energy directive by a techno-economic optimisation model," Energy Policy, Elsevier, vol. 60(C), pages 364-377.
    18. Chang, Yusang & Lee, Jinsoo & Yoon, Hyerim, 2012. "Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook," Energy Policy, Elsevier, vol. 50(C), pages 154-160.
    19. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    2. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    3. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Pina, André & Silva, Carlos & Ferrão, Paulo, 2011. "Modeling hourly electricity dynamics for policy making in long-term scenarios," Energy Policy, Elsevier, vol. 39(9), pages 4692-4702, September.
    5. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    6. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    7. Parrado-Hernando, Gonzalo & Herc, Luka & Pfeifer, Antun & Capellán-Perez, Iñigo & Batas Bjelić, Ilija & Duić, Neven & Frechoso-Escudero, Fernando & Miguel González, Luis Javier & Gjorgievski, Vladimir, 2022. "Capturing features of hourly-resolution energy models through statistical annual indicators," Renewable Energy, Elsevier, vol. 197(C), pages 1192-1223.
    8. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    9. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    10. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    11. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    12. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    13. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    14. McCallum, Peter & Jenkins, David P. & Peacock, Andrew D. & Patidar, Sandhya & Andoni, Merlinda & Flynn, David & Robu, Valentin, 2019. "A multi-sectoral approach to modelling community energy demand of the built environment," Energy Policy, Elsevier, vol. 132(C), pages 865-875.
    15. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    16. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    17. Di Leo, Senatro & Caramuta, Pietro & Curci, Paola & Cosmi, Carmelina, 2020. "Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models," Energy, Elsevier, vol. 196(C).
    18. Gerbelová, Hana & Amorim, Filipa & Pina, André & Melo, Mário & Ioakimidis, Christos & Ferrão, Paulo, 2014. "Potential of CO2 (carbon dioxide) taxes as a policy measure towards low-carbon Portuguese electricity sector by 2050," Energy, Elsevier, vol. 69(C), pages 113-119.
    19. Pina, André & Silva, Carlos A. & Ferrão, Paulo, 2013. "High-resolution modeling framework for planning electricity systems with high penetration of renewables," Applied Energy, Elsevier, vol. 112(C), pages 215-223.
    20. Grimsrud, Kristine & Hagem, Cathrine & Lind, Arne & Lindhjem, Henrik, 2021. "Efficient spatial distribution of wind power plants given environmental externalities due to turbines and grids," Energy Economics, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:61:y:2013:i:c:p:419-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.