IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i8p1715-1723.html
   My bibliography  Save this article

Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica

Author

Listed:
  • Tin, Tina
  • Sovacool, Benjamin K.
  • Blake, David
  • Magill, Peter
  • El Naggar, Saad
  • Lidstrom, Sven
  • Ishizawa, Kenji
  • Berte, Johan

Abstract

This article showcases a range of small and large scale energy efficiency and renewable energy deployments at Antarctic research stations and field camps. Due to the cold and harsh environment, significant amounts of fuel are needed to support humans working and living in Antarctica. The purchase, transportation and storage of large amounts of fossil fuel entail significant economic costs and environmental risks and have motivated developments in energy efficiency and renewable energy deployment. Over the past three decades, improved building design, behavioral change, cogeneration, solar collectors, solar panels and wind turbines have been found to be effective in Antarctica, demonstrating that harsh environmental conditions and technological barriers do not have to limit the deployment of energy efficiency and renewable energy. The ambition to run entire stations or field camps on 100% renewable energy is increasingly common and feasible. While the power requirements of Antarctic research stations are small compared to urban installations on other continents, these case studies clearly demonstrate that if energy efficiency and renewable energy can be deployed widely on the coldest, darkest and most remote continent of the world, their deployment should be more widespread and encouraged on other continents.

Suggested Citation

  • Tin, Tina & Sovacool, Benjamin K. & Blake, David & Magill, Peter & El Naggar, Saad & Lidstrom, Sven & Ishizawa, Kenji & Berte, Johan, 2010. "Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica," Renewable Energy, Elsevier, vol. 35(8), pages 1715-1723.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1715-1723
    DOI: 10.1016/j.renene.2009.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivier, Jürgen R. & Harms, Thomas M. & Esterhuyse, Daniël J., 2008. "Technical and economic evaluation of the utilization of solar energy at South Africa's SANAE IV base in Antarctica," Renewable Energy, Elsevier, vol. 33(5), pages 1073-1084.
    2. Teetz, H.W. & Harms, T.M. & von Backström, T.W., 2003. "Assessment of the wind power potential at SANAE IV base, Antarctica: a technical and economic feasibility study," Renewable Energy, Elsevier, vol. 28(13), pages 2037-2061.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Lockrey & Karli Verghese & Enda Crossin & Gordon Young, 2020. "Development of an environmental impact reduction strategy for Australia's Antarctic infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 804-814, August.
    2. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2016. "Wind energy potential of Vesleskarvet and the feasibility of meeting the South African׳s SANAE IV energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 226-234.
    3. de Christo, Tiago Malavazi & Fardin, Jussara Farias & Simonetti, Domingos Sávio Lyrio & Encarnação, Lucas Frizera & de Alvarez, Cristina Engel, 2016. "Design and analysis of hybrid energy systems: The Brazilian Antarctic Station case," Renewable Energy, Elsevier, vol. 88(C), pages 236-246.
    4. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    5. Arslan, Erhan & Küçük, Furkan Ali & Biçer, Çetin & Özsoy, Burcu, 2024. "Determining energy, exergy and enviroeconomic analysis of stand-alone photovoltaic panel under harsh environment condition: Antarctica Horseshoe-Island cases," Renewable Energy, Elsevier, vol. 226(C).
    6. de Christo, Tiago Malavazi & Perron, Sylvain & Fardin, Jussara Farias & Simonetti, Domingos Sávio Lyrio & de Alvarez, Cristina Engel, 2019. "Demand-side energy management by cooperative combination of plans: A multi-objective method applicable to isolated communities," Applied Energy, Elsevier, vol. 240(C), pages 453-472.
    7. Obydenkova, Svetlana V. & Pearce, Joshua M., 2016. "Technical viability of mobile solar photovoltaic systems for indigenous nomadic communities in northern latitudes," Renewable Energy, Elsevier, vol. 89(C), pages 253-267.
    8. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    9. Boccaletti, Chiara & Di Felice, Pietro & Santini, Ezio, 2014. "Integration of renewable power systems in an Antarctic Research Station," Renewable Energy, Elsevier, vol. 62(C), pages 582-591.
    10. Rasidnie Razin Wong & Zheng Syuen Lim & Noor Azmi Shaharuddin & Azham Zulkharnain & Claudio Gomez-Fuentes & Siti Aqlima Ahmad, 2021. "Diesel in Antarctica and a Bibliometric Study on Its Indigenous Microorganisms as Remediation Agent," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    11. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    12. Mussard, Maxime, 2017. "Solar energy under cold climatic conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 733-745.
    13. Jose Alberto Moleón Baca & Antonio Jesús Expósito González & Candido Gutiérrez Montes, 2020. "Analysis of the Patent of a Protective Cover for Vertical-Axis Wind Turbines (VAWTs): Simulations of Wind Flow," Sustainability, MDPI, vol. 12(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Christo, Tiago Malavazi & Fardin, Jussara Farias & Simonetti, Domingos Sávio Lyrio & Encarnação, Lucas Frizera & de Alvarez, Cristina Engel, 2016. "Design and analysis of hybrid energy systems: The Brazilian Antarctic Station case," Renewable Energy, Elsevier, vol. 88(C), pages 236-246.
    2. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    3. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    4. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    5. Li, Chong & Zhou, Dequn & Wang, Hui & Lu, Yuzheng & Li, Dongdong, 2020. "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China," Energy, Elsevier, vol. 192(C).
    6. Babinec, Susan & Baring-Gould, Ian & Bender, Amy N. & Blair, Nate & Li, Xiangkun & Muehleisen, Ralph T. & Olis, Dan & Ovaitt, Silvana, 2024. "Techno-economic analysis of renewable energy generation at the South Pole," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    7. Obydenkova, Svetlana V. & Pearce, Joshua M., 2016. "Technical viability of mobile solar photovoltaic systems for indigenous nomadic communities in northern latitudes," Renewable Energy, Elsevier, vol. 89(C), pages 253-267.
    8. Arslan, Erhan & Küçük, Furkan Ali & Biçer, Çetin & Özsoy, Burcu, 2024. "Determining energy, exergy and enviroeconomic analysis of stand-alone photovoltaic panel under harsh environment condition: Antarctica Horseshoe-Island cases," Renewable Energy, Elsevier, vol. 226(C).
    9. Zhou, Xinping & Yang, Jiakuan & Wang, Fen & Xiao, Bo, 2009. "Economic analysis of power generation from floating solar chimney power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 736-749, May.
    10. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.
    11. Okoye, Chiemeka Onyeka & Oranekwu-Okoye, Blessing Chioma, 2018. "Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2537-2547.
    12. Mussard, Maxime, 2017. "Solar energy under cold climatic conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 733-745.
    13. Ahmed, Ahmed Shata, 2012. "Electricity generation from the first wind farm situated at Ras Ghareb, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1630-1635.
    14. Ahmed, Ahmed Shata, 2010. "Wind energy as a potential generation source at Ras Benas, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2167-2173, October.
    15. Olivier, Jürgen R. & Harms, Thomas M. & Esterhuyse, Daniël J., 2008. "Technical and economic evaluation of the utilization of solar energy at South Africa's SANAE IV base in Antarctica," Renewable Energy, Elsevier, vol. 33(5), pages 1073-1084.
    16. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2016. "Wind energy potential of Vesleskarvet and the feasibility of meeting the South African׳s SANAE IV energy demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 226-234.
    17. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1715-1723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.