IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v89y2016icp253-267.html
   My bibliography  Save this article

Technical viability of mobile solar photovoltaic systems for indigenous nomadic communities in northern latitudes

Author

Listed:
  • Obydenkova, Svetlana V.
  • Pearce, Joshua M.

Abstract

This study assesses the viability of photovoltaic (PV) technology in northern latitudes as a part of energy supply system for remote nomadic camps of indigenous communities involved in reindeer husbandry. Two boundary locations were analyzed: southern Yakutia, Russia, 56°41′N; and the northernmost area in Norway, Finnmark, 68°51′N. Sixteen scenarios were simulated based on energy consumption, light sources and electric load schedules. The results show that PV-based systems are beneficial under a variety of economic conditions and fuel prices when compared to systems solely fuel-based. Incandescent lights, which are currently common for such settlements, should be replaced with LED lighting to enable easier PV system portability by reindeer sled. For areas with significant numbers of minimal solar flux days partial load scheduling is necessary for economically viable systems. The simulations showed that the specific weight of the system (excluding support structure) measured as the system total weight to the number of camp residents ratio can be reduced by a factor of two for optimized loads to 5.8 kg/person for a low energy-intensive camps and 11.0 kg/person for a high energy intensive camps.

Suggested Citation

  • Obydenkova, Svetlana V. & Pearce, Joshua M., 2016. "Technical viability of mobile solar photovoltaic systems for indigenous nomadic communities in northern latitudes," Renewable Energy, Elsevier, vol. 89(C), pages 253-267.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:253-267
    DOI: 10.1016/j.renene.2015.12.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115305425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.12.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Jarrow, Robert & Kwok, Simon Sai Man, 2015. "Specification tests of calibrated option pricing models," Journal of Econometrics, Elsevier, vol. 189(2), pages 397-414.
    3. Crisan, D. & Li, K., 2015. "Generalised particle filters with Gaussian mixtures," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2643-2673.
    4. Boccaletti, Chiara & Di Felice, Pietro & Santini, Ezio, 2014. "Integration of renewable power systems in an Antarctic Research Station," Renewable Energy, Elsevier, vol. 62(C), pages 582-591.
    5. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    6. Joshua Pearce, 2012. "The case for open source appropriate technology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(3), pages 425-431, June.
    7. Tin, Tina & Sovacool, Benjamin K. & Blake, David & Magill, Peter & El Naggar, Saad & Lidstrom, Sven & Ishizawa, Kenji & Berte, Johan, 2010. "Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica," Renewable Energy, Elsevier, vol. 35(8), pages 1715-1723.
    8. Peng, Lihua & Li, Junping, 2015. "A generalization of Φ-moment martingale inequalities," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 61-68.
    9. Higier, Andrew & Arbide, Adrian & Awaad, Amer & Eiroa, Justo & Miller, Jerry & Munroe, Norman & Ravinet, Alfredo & Redding, Brian, 2013. "Design, development and deployment of a hybrid renewable energy powered mobile medical clinic with automated modular control system," Renewable Energy, Elsevier, vol. 50(C), pages 847-857.
    10. Lau, K.Y. & Yousof, M.F.M. & Arshad, S.N.M. & Anwari, M. & Yatim, A.H.M., 2010. "Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions," Energy, Elsevier, vol. 35(8), pages 3245-3255.
    11. Jin-Guan Lin & Xue-Ping Chen & Jian-Feng Yang & Xing-Fang Huang & Ying-Shan Zhang, 2015. "Generalized variable resolution designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 873-884, October.
    12. Stutenbäumer, Ulrich & Negash, Tesfaye & Abdi, Amensisa, 1999. "Performance of small-scale photovoltaic systems and their potential for rural electrification in Ethiopia," Renewable Energy, Elsevier, vol. 18(1), pages 35-48.
    13. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    14. Olivier, Jürgen R. & Harms, Thomas M. & Esterhuyse, Daniël J., 2008. "Technical and economic evaluation of the utilization of solar energy at South Africa's SANAE IV base in Antarctica," Renewable Energy, Elsevier, vol. 33(5), pages 1073-1084.
    15. Tian, Guo-Liang & Ma, Huijuan & Zhou, Yong & Deng, Dianliang, 2015. "Generalized endpoint-inflated binomial model," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 97-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pringle, Adam M. & Handler, R.M. & Pearce, J.M., 2017. "Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 572-584.
    2. Smeets, Niels, 2017. "Similar goals, divergent motives. The enabling and constraining factors of Russia's capacity-based renewable energy support scheme," Energy Policy, Elsevier, vol. 101(C), pages 138-149.
    3. Mussard, Maxime, 2017. "Solar energy under cold climatic conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 733-745.
    4. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
    5. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Christo, Tiago Malavazi & Fardin, Jussara Farias & Simonetti, Domingos Sávio Lyrio & Encarnação, Lucas Frizera & de Alvarez, Cristina Engel, 2016. "Design and analysis of hybrid energy systems: The Brazilian Antarctic Station case," Renewable Energy, Elsevier, vol. 88(C), pages 236-246.
    2. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    3. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    4. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    5. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    6. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    7. Ferreira, Agmar & Kunh, Sheila S. & Fagnani, Kátia C. & De Souza, Tiago A. & Tonezer, Camila & Dos Santos, Geocris Rodrigues & Coimbra-Araújo, Carlos H., 2018. "Economic overview of the use and production of photovoltaic solar energy in brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 181-191.
    8. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    9. Lang, Tillmann & Gloerfeld, Erik & Girod, Bastien, 2015. "Don׳t just follow the sun – A global assessment of economic performance for residential building photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 932-951.
    10. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    11. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    12. Shahzad, M. Kashif & Zahid, Adeem & ur Rashid, Tanzeel & Rehan, Mirza Abdullah & Ali, Muzaffar & Ahmad, Mueen, 2017. "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software," Renewable Energy, Elsevier, vol. 106(C), pages 264-273.
    13. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    14. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    15. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
    16. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    17. Kantamneni, Abhilash & Winkler, Richelle & Gauchia, Lucia & Pearce, Joshua M., 2016. "Emerging economic viability of grid defection in a northern climate using solar hybrid systems," Energy Policy, Elsevier, vol. 95(C), pages 378-389.
    18. Bhattacharyya, Subhes C., 2015. "Mini-grid based electrification in Bangladesh: Technical configuration and business analysis," Renewable Energy, Elsevier, vol. 75(C), pages 745-761.
    19. Wadhawan, Siddharth R. & Pearce, Joshua M., 2017. "Power and energy potential of mass-scale photovoltaic noise barrier deployment: A case study for the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 125-132.
    20. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:253-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.