IDEAS home Printed from
   My bibliography  Save this article

Capacity factor of wind power realized values vs. estimates


  • Boccard, Nicolas


For two decades now, the capacity factor of wind power measuring the average energy delivered has been assumed in the 30-35% range of the name plate capacity. Yet, the mean realized value for Europe over the last five years is below 21%; accordingly private cost is two-third higher and the reduction of carbon emissions is 40% less than previously expected. We document this discrepancy and offer rationalizations that emphasize the long term variations of wind speeds, the behavior of the wind power industry, political interference and the mode of finance. We conclude with the consequences of the capacity factor miscalculation and some policy recommendations.

Suggested Citation

  • Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2679-2688

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Stenzel, Till & Frenzel, Alexander, 2008. "Regulating technological change--The strategic reactions of utility companies towards subsidy policies in the German, Spanish and UK electricity markets," Energy Policy, Elsevier, vol. 36(7), pages 2645-2657, July.
    2. Abderrazzaq, M.H., 2004. "Energy production assessment of small wind farms," Renewable Energy, Elsevier, vol. 29(15), pages 2261-2272.
    3. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    4. Lu, Lin & Yang, Hongxing & Burnett, John, 2002. "Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics," Renewable Energy, Elsevier, vol. 27(1), pages 1-12.
    5. Ahmed Shata, A.S. & Hanitsch, R., 2006. "The potential of electricity generation on the east coast of Red Sea in Egypt," Renewable Energy, Elsevier, vol. 31(10), pages 1597-1615.
    6. Ilkan, M. & Erdil, E. & Egelioglu, F., 2005. "Renewable energy resources as an alternative to modify the load curve in Northern Cyprus," Energy, Elsevier, vol. 30(5), pages 555-572.
    7. Iniyan, S. & Jagadeesan, T. R., 1998. "Effect of wind energy system performance on optimal renewable energy model--an analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(4), pages 327-344, December.
    8. Teetz, H.W. & Harms, T.M. & von Backström, T.W., 2003. "Assessment of the wind power potential at SANAE IV base, Antarctica: a technical and economic feasibility study," Renewable Energy, Elsevier, vol. 28(13), pages 2037-2061.
    9. Bird, Lori & Bolinger, Mark & Gagliano, Troy & Wiser, Ryan & Brown, Matthew & Parsons, Brian, 2005. "Policies and market factors driving wind power development in the United States," Energy Policy, Elsevier, vol. 33(11), pages 1397-1407, July.
    10. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    11. Nfaoui, H. & Bahraui, J. & Darwish, A.S. & Sayigh, A.A.M., 1991. "Wind energy potential in Morocco," Renewable Energy, Elsevier, vol. 1(1), pages 1-8.
    12. Dale, Lewis & Milborrow, David & Slark, Richard & Strbac, Goran, 2004. "Total cost estimates for large-scale wind scenarios in UK," Energy Policy, Elsevier, vol. 32(17), pages 1949-1956, November.
    13. Abed, K.A., 1997. "Performance of a wind-turbine-driven compressor for lifting water," Energy, Elsevier, vol. 22(1), pages 21-26.
    14. Rehman, S. & El-Amin, I.M. & Ahmad, F. & Shaahid, S.M. & Al-Shehri, A.M. & Bakhashwain, J.M., 2007. "Wind power resource assessment for Rafha, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 937-950, June.
    15. Cataldo, J. & Nunes, V., 1996. "Wind power assessment in Uruguay," Renewable Energy, Elsevier, vol. 9(1), pages 794-797.
    16. Dinica, Valentina, 2008. "Initiating a sustained diffusion of wind power: The role of public-private partnerships in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3562-3571, September.
    17. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    18. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    19. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    20. Enzensberger, N. & Fichtner, W. & Rentz, O., 2003. "Financing renewable energy projects via closed-end funds—a German case study," Renewable Energy, Elsevier, vol. 28(13), pages 2023-2036.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    2. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    3. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    4. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    5. Belabes, B. & Youcefi, A. & Guerri, O. & Djamai, M. & Kaabeche, A., 2015. "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1245-1255.
    6. Calif, Rudy & Emilion, Richard & Soubdhan, Ted, 2011. "Classification of wind speed distributions using a mixture of Dirichlet distributions," Renewable Energy, Elsevier, vol. 36(11), pages 3091-3097.
    7. Ahmed, Ahmed Shata, 2012. "Electricity generation from the first wind farm situated at Ras Ghareb, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1630-1635.
    8. Ahmed, Ahmed Shata, 2010. "Wind energy as a potential generation source at Ras Benas, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2167-2173, October.
    9. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    10. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    11. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    12. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    13. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    14. Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
    15. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    16. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    17. Brown, Jason P. & Pender, John & Wiser, Ryan & Lantz, Eric & Hoen, Ben, 2012. "Ex post analysis of economic impacts from wind power development in U.S. counties," Energy Economics, Elsevier, vol. 34(6), pages 1743-1754.
    18. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    19. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    20. Doblinger, Claudia & Soppe, Birthe, 2013. "Change-actors in the U.S. electric energy system: The role of environmental groups in utility adoption and diffusion of wind power," Energy Policy, Elsevier, vol. 61(C), pages 274-284.

    More about this item


    Electricity Renewables Planning;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:7:p:2679-2688. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.