IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v114y2019ic3.html
   My bibliography  Save this article

Economic viability of captive off-grid solar photovoltaic and diesel hybrid energy systems for the Nigerian private sector

Author

Listed:
  • Adesanya, Adewale A.
  • Pearce, Joshua M.

Abstract

It is well established that lack of both electric supply capacity and reliability weaken the Nigerian economy. Recently, the reduction in solar photovoltaic (PV) costs along with the technical potential to couple PV to hybrid battery and diesel generators provides Nigerian businesses with an opportunity to reduce operating costs while defecting from the grid. This study investigates the potential of using off-grid hybrid energy systems for private industries within and near Lagos state currently with relatively high daily electricity demands that are met with supply through captive diesel generation. The results based on simulations of six industry sector load profiles developed from surveys found solar PV and diesel hybrid energy systems are economically viable for a wide array of industries in the Nigerian private sector including real estate, education, banking, automobile, hospitality and production. Five of the six sectors had discounted payback times for the systems under a year and ROIs >100%. The results established that the levelized cost of electricity is lower for every sector analysed with inclusion of solar PV, lower still with coupling of batteries and more reliable than the current grid-provided electricity. Nigeria as a whole will also benefit from widespread adoption of solar hybrid systems, as it will assist the balance of trade by reducing refined petroleum imports. In conclusion, the results of this study make it clear that every scale of Nigerian businesses could increase profitability with the use of solar hybrid systems.

Suggested Citation

  • Adesanya, Adewale A. & Pearce, Joshua M., 2019. "Economic viability of captive off-grid solar photovoltaic and diesel hybrid energy systems for the Nigerian private sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:114:y:2019:i:c:3
    DOI: 10.1016/j.rser.2019.109348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305568
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emodi, Nnaemeka Vincent & Boo, Kyung-Jin, 2015. "Sustainable energy development in Nigeria: Current status and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 356-381.
    2. Oladokun, V.O. & Asemota, O.C., 2015. "Unit cost of electricity in Nigeria: A cost model for captive diesel powered generating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 35-40.
    3. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    4. Albrecht, Johan, 2007. "The future role of photovoltaics: A learning curve versus portfolio perspective," Energy Policy, Elsevier, vol. 35(4), pages 2296-2304, April.
    5. Shaaban, Mohamed & Petinrin, J.O., 2014. "Renewable energy potentials in Nigeria: Meeting rural energy needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 72-84.
    6. Ajayi, Oluseyi O. & Ajayi, Oluwatoyin O., 2013. "Nigeria's energy policy: Inferences, analysis and legal ethics toward RE development," Energy Policy, Elsevier, vol. 60(C), pages 61-67.
    7. Peter Ozaveshe Oviroh & Tien-Chien Jen, 2018. "The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria," Energies, MDPI, Open Access Journal, vol. 11(3), pages 1-20, March.
    8. Dufo-López, Rodolfo & Bernal-Agustín, José L. & Yusta-Loyo, José M. & Domínguez-Navarro, José A. & Ramírez-Rosado, Ignacio J. & Lujano, Juan & Aso, Ismael, 2011. "Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage," Applied Energy, Elsevier, vol. 88(11), pages 4033-4041.
    9. Chiara Modanese & Hannu S. Laine & Toni P. Pasanen & Hele Savin & Joshua M. Pearce, 2018. "Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing," Energies, MDPI, Open Access Journal, vol. 11(9), pages 1-18, September.
    10. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    11. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    12. Oparaku, O.U., 2003. "Rural area power supply in Nigeria: A cost comparison of the photovoltaic, diesel/gasoline generator and grid utility options," Renewable Energy, Elsevier, vol. 28(13), pages 2089-2098.
    13. Pearce, J.M., 2009. "Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems," Energy, Elsevier, vol. 34(11), pages 1947-1954.
    14. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    15. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    16. Nosrat, Amir H. & Swan, Lukas G. & Pearce, Joshua M., 2013. "Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage," Energy, Elsevier, vol. 49(C), pages 366-374.
    17. Nosrat, Amir & Pearce, Joshua M., 2011. "Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems," Applied Energy, Elsevier, vol. 88(9), pages 3270-3276.
    18. Ozoegwu, C.G. & Mgbemene, C.A. & Ozor, P.A., 2017. "The status of solar energy integration and policy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 457-471.
    19. Siddig, Khalid & Aguiar, Angel & Grethe, Harald & Minor, Peter & Walmsley, Terrie, 2014. "Impacts of removing fuel import subsidies in Nigeria on poverty," Energy Policy, Elsevier, vol. 69(C), pages 165-178.
    20. Perez, Richard & Zweibel, Ken & Hoff, Thomas E., 2011. "Solar power generation in the US: Too expensive, or a bargain?," Energy Policy, Elsevier, vol. 39(11), pages 7290-7297.
    21. Ozoegwu, Chigbogu Godwin, 2018. "The solar energy assessment methods for Nigeria: The current status, the future directions and a neural time series method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 146-159.
    22. Okoye, Chiemeka Onyeka & Taylan, Onur & Baker, Derek K., 2016. "Solar energy potentials in strategically located cities in Nigeria: Review, resource assessment and PV system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 550-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Peffley, Trevor B. & Pearce, Joshua M., 2020. "The potential for grid defection of small and medium sized enterprises using solar photovoltaic, battery and generator hybrid systems," Renewable Energy, Elsevier, vol. 148(C), pages 193-204.
    3. Harajli, H. & Kabakian, V. & El-Baba, J. & Diab, A. & Nassab, C., 2020. "Commercial-scale hybrid solar photovoltaic - diesel systems in select Arab countries with weak grids: An integrated appraisal," Energy Policy, Elsevier, vol. 137(C).
    4. Aliyu Salisu Barau & Aliyu Haidar Abubakar & Abdul-Hakim Ibrahim Kiyawa, 2020. "Not There Yet: Mapping Inhibitions to Solar Energy Utilisation by Households in African Informal Urban Neighbourhoods," Sustainability, MDPI, Open Access Journal, vol. 12(3), pages 1-14, January.
    5. Blessing Ugwoke & Adedoyin Adeleke & Stefano P. Corgnati & Joshua M. Pearce & Pierluigi Leone, 2020. "Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities," Sustainability, MDPI, Open Access Journal, vol. 12(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:114:y:2019:i:c:3. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.