Author
Listed:
- Fatima, Samar
- Bashir, Arslan Ahmad
- Jokinen, Ilkka
- Lehtonen, Matti
- Pourakbari-Kasmaei, Mahdi
Abstract
The modern electric grid enables prosumers’ participation in energy management by integrating flexible loads like electric vehicles (EVs) and battery energy storage systems (BESS) via demand response (DR). However, the main challenge lies in motivating EV owners to adjust their low-cost charging plans to align with distributed generation, e.g., wind and photovoltaic (PV) power. This requires a reward system with more attractive financial incentives than the customers’ initially planned savings. From the mathematical standpoint, the primary challenge lies in finding the dual of the problem due to the presence of several disjoint or overlapping time-based exceptions in the modeling of EVs and BESS. This study aims to optimize the synergy between PV, wind, and flexible EV loads via an incentive-based DR framework. A bi-level model is proposed and solved using a Stackelberg game between a wind-farm aggregator and customers, reducing customer costs and improving wind-load matching. The proposed bi-level model is transformed into a single-level equivalent through a dual formulation, addressing the complexities of overlapping time-based exceptions causing redundancies. Validated across seasons, the results highlight the DR’s success in enhancing aggregator and customer outcomes. In an example case, customer energy costs dropped by up to 146.56 €/day, and the aggregator reduced the wind energy-load mismatch by up to 356 kWh in one day. Results show that greater load flexibility and wind capacity enhance economic and energy management outcomes, highlighting the impact of scalable DR opportunities.
Suggested Citation
Fatima, Samar & Bashir, Arslan Ahmad & Jokinen, Ilkka & Lehtonen, Matti & Pourakbari-Kasmaei, Mahdi, 2025.
"Synchronizing flexible loads with wind energy via Stackelberg game for renewable integration and economic efficiency,"
Applied Energy, Elsevier, vol. 397(C).
Handle:
RePEc:eee:appene:v:397:y:2025:i:c:s0306261925011286
DOI: 10.1016/j.apenergy.2025.126398
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925011286. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.