IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics0360544225005560.html
   My bibliography  Save this article

Study on the load-following ability of HeXe cooled SMR with close Brayton cycle for renewable energy integration

Author

Listed:
  • Li, Xinyu
  • Guan, Chaoran
  • Chai, Xiang
  • Liu, Xiaojing

Abstract

Microgrids are vital for enhancing energy resilience and reliability, and the aim of carbon neutrality accelerates the integration of renewable energy. However, the variability of renewable energy and fluctuating demand present challenges to supply-load balance for renewable microgrids. This paper addresses the supply-load balance issues by integrating small modular reactors (SMRs) into renewable microgrids, developing load-following strategies, and evaluating transient performance under fluctuations. It presents a one-dimensional dynamic model of the Helium-Xenon cooled SMR with closed Brayton cycle (CBC) and transient simulations are conducted for three different control methods, to investigate the mechanisms and evaluate their characteristics and deficiencies. Combined regulation strategies are proposed, and their effectiveness is proven. From the evaluation, inventory control performs better initially. The turbine bypass valve control is also a favorable choice, especially under strict safety requirements. Using load regulation combinations, the system demonstrates a quick and fluctuation-free load-following in 20 %/100s ramp change and the 20 % step change within a 10-s offset for 100%–0% full range, able to manage the variability and demand fluctuations of microgrids. The outcomes of this study confirm the load-following capability of the HeXe cooled SMRs and highlight the feasibility and effectiveness of integrating nuclear energy into renewable microgrids.

Suggested Citation

  • Li, Xinyu & Guan, Chaoran & Chai, Xiang & Liu, Xiaojing, 2025. "Study on the load-following ability of HeXe cooled SMR with close Brayton cycle for renewable energy integration," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005560
    DOI: 10.1016/j.energy.2025.134914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225005560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Qingfeng & Liang, Wenlong & Zhu, Ze & Li, Yiliang & Wang, Pengfei, 2023. "Multimodel generalized predictive control of a heat-pipe reactor coupled with an open-air Brayton cycle," Energy, Elsevier, vol. 279(C).
    2. Li, Jingkang & Hu, Zunyan & Jiang, Hongsheng & Guo, Yuchuan & Li, Zeguang & Zhuge, Weilin & Xu, Liangfei & Li, Jianqiu & Ouyang, Minggao, 2023. "Coupled characteristics and performance of heat pipe cooled reactor with closed Brayton cycle," Energy, Elsevier, vol. 280(C).
    3. Catherine Mitchell, 2016. "Momentum is increasing towards a flexible electricity system based on renewables," Nature Energy, Nature, vol. 1(2), pages 1-6, February.
    4. Zhang, Pan & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos & Alharthi, Yahya Z. & Safaraliev, Murodbek, 2024. "An ADMM-enabled robust optimization framework for self-healing scheduling of smart grids integrated with smart prosumers," Applied Energy, Elsevier, vol. 363(C).
    5. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    6. Wang, Rui & Wang, Xuan & Shu, Gequn & Tian, Hua & Cai, Jinwen & Bian, Xingyan & Li, Xinyu & Qin, Zheng & Shi, Lingfeng, 2022. "Comparison of different load-following control strategies of a sCO2 Brayton cycle under full load range," Energy, Elsevier, vol. 246(C).
    7. Qiu, Leilei & Liao, Shengyong & Fan, Sui & Sun, Peiwei & Wei, Xinyu, 2023. "Dynamic modelling and control system design of micro-high-temperature gas-cooled reactor with helium brayton cycle," Energy, Elsevier, vol. 278(PB).
    8. Jon Olauson & Mohd Nasir Ayob & Mikael Bergkvist & Nicole Carpman & Valeria Castellucci & Anders Goude & David Lingfors & Rafael Waters & Joakim Widén, 2016. "Net load variability in Nordic countries with a highly or fully renewable power system," Nature Energy, Nature, vol. 1(12), pages 1-8, December.
    9. Bian, Xingyan & Wang, Xuan & Wang, Rui & Cai, Jinwen & Tian, Hua & Shu, Gequn & Lin, Zhimin & Yu, Xiangyu & Shi, Lingfeng, 2022. "A comprehensive evaluation of the effect of different control valves on the dynamic performance of a recompression supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 248(C).
    10. Mansouri, Seyed Amir & Nematbakhsh, Emad & Jordehi, Ahmad Rezaee & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco, 2023. "An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination," Applied Energy, Elsevier, vol. 341(C).
    11. Temiz, Mert & Dincer, Ibrahim, 2023. "Solar and sodium fast reactor-based integrated energy system developed with thermal energy storage and hydrogen," Energy, Elsevier, vol. 284(C).
    12. Liese, Eric & Albright, Jacob & Zitney, Stephen A., 2020. "Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle," Applied Energy, Elsevier, vol. 277(C).
    13. Zhao, Kaifang & Qiu, Kai & Yan, Jian & Shaker, Mir Pasha, 2023. "Technical and economic operation of VPPs based on competitive bi–level negotiations," Energy, Elsevier, vol. 282(C).
    14. Ma, Wenkui & Ye, Ping & Gao, Yue & Hao, Yadong & Yang, Xiaoyong, 2024. "Optimization of thermodynamic performance and mass evaluation for MW-class space nuclear reactor coupled with noble gas binary mixtures Brayton cycle," Energy, Elsevier, vol. 293(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Junda & Chen, Yinuo & Liu, Xiaojing & Chai, Xiang & He, Hui & Xiong, Jinbiao & Zhang, Tengfei, 2025. "Optimizing thermal stress distribution in heat-pipe-cooled microreactors using multi-physics data-driven methods," Energy, Elsevier, vol. 323(C).
    2. Wang, He & Lu, Daogang & Xu, Chao & Cao, Qiong & Li, Zhen & Fan, Cheng & Lin, Manjiao, 2025. "Study on flow and heat transfer characteristics of helium-xenon mixtures in airfoil-fin PCHEs with different cross-sectional parameters," Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Tianyang & Sun, Yuwei & Yan, Xinping & Yuan, Chengqing, 2025. "Load-following operation of supercritical CO2 power cycles under turbine speed control with different shaft configurations," Energy, Elsevier, vol. 328(C).
    2. Liao, Haoyang & Wang, Xianbo & Xie, Lin & Lu, Ruibo & Zhao, Fulong & Tan, Sichao & Gao, Puzhen & Tian, Ruifeng, 2024. "Thermal-hydraulic characteristics analysis of unprotected accident and protection control strategy for helium-xenon cooled reactor system," Energy, Elsevier, vol. 302(C).
    3. Zhang, Tao & Wu, Chuang & Li, Zhankui & Li, Bo, 2024. "Enhanced dynamic modeling of regenerative CO2 transcritical power cycles: Comparative analysis of Pham-corrected and conventional turbine models," Energy, Elsevier, vol. 313(C).
    4. Liao, Haoyang & Zhao, Fulong & Qin, Aoxiang & Chen, Baowen & Tan, Sichao & Gao, Puzhen & Tian, Ruifeng, 2025. "Design and characteristics analysis of various residual heat removal schemes and shutdown control strategies for helium-xenon cooled reactor system," Energy, Elsevier, vol. 317(C).
    5. Li, Tao & Xiong, Jinbiao & Xie, Qiuxia & Chai, Xiang, 2024. "Performance analysis of heat pipe micro-reactor with Stirling engine based on full-scope multi-physics coupled simulation," Energy, Elsevier, vol. 313(C).
    6. Li, Zhen & Lu, Daogang & Lin, Manjiao & Cao, Qiong, 2024. "Investigation of the thermal-hydraulic characteristics of SCO2 in a modified hybrid airfoil channel," Energy, Elsevier, vol. 308(C).
    7. Zhao, Tian & Li, Hang & Li, Xia & Sun, Qing-Han & Fang, Xuan-Yi & Ma, Huan & Chen, Qun, 2024. "A frequency domain dynamic simulation method for heat exchangers and thermal systems," Energy, Elsevier, vol. 286(C).
    8. Zhao, Quanbin & Xu, Jiayuan & Hou, Min & Chong, Daotong & Wang, Jinshi & Chen, Weixiong, 2024. "Dynamic characteristic analysis of SCO2 Brayton cycle under different turbine back pressure modes," Energy, Elsevier, vol. 293(C).
    9. Wang, He & Lu, Daogang & Xu, Chao & Cao, Qiong & Li, Zhen & Fan, Cheng & Lin, Manjiao, 2025. "Study on flow and heat transfer characteristics of helium-xenon mixtures in airfoil-fin PCHEs with different cross-sectional parameters," Energy, Elsevier, vol. 325(C).
    10. Feng, Jiaqi & Wang, Junpeng & Zhang, Enbo & Bai, Bofeng, 2025. "Control mechanism of compressible volume for transcritical CO2 cycle power system," Energy, Elsevier, vol. 319(C).
    11. Alsawy, Tariq & Elsayed, Mohamed L. & Mohammed, Ramy H. & Mesalhy, Osama, 2024. "Accuracy assessment of the turbomachinery performance maps correction models used in dynamic characteristics of supercritical CO2 Brayton power cycle," Energy, Elsevier, vol. 309(C).
    12. Qiu, Leilei & Liao, Shengyong & Fan, Sui & Sun, Peiwei & Wei, Xinyu, 2023. "Dynamic modelling and control system design of micro-high-temperature gas-cooled reactor with helium brayton cycle," Energy, Elsevier, vol. 278(PB).
    13. Wang, Rui & Tian, Hua & Wang, Xuan & Peng, Kuanyun, 2025. "Experimental investigation of all-regime control for supercritical CO2 Brayton cycle system," Applied Energy, Elsevier, vol. 392(C).
    14. Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).
    15. Zhang, Yifan & Zhou, Yujia & Yang, Yu & Li, Kailun & Lei, Xianliang & Li, Hongzhi, 2024. "Study on control strategies of the MW-scale supercritical CO2 recompression Brayton cycle for lead-cooled fast reactor," Energy, Elsevier, vol. 312(C).
    16. Deng, Jiaolong & Guan, Chaoran & Wang, Tianshi & Liu, Xiaojing & Chai, Xiang, 2024. "Evaluation of start-up characteristics for heat pipe-cooled nuclear reactor coupled with recuperated open-air brayton cycle using hardware-in-the-loop," Energy, Elsevier, vol. 301(C).
    17. Du, Yadong & Yang, Ce & Zhao, Ben & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Zhao, Wei, 2022. "Dynamic characteristics of a recompression supercritical CO2 cycle against variable operating conditions and temperature fluctuations of reactor outlet coolant," Energy, Elsevier, vol. 258(C).
    18. Li, Xiaoya & Chen, Xiaoting & Que, Wenshuai, 2025. "A review on machine learning techniques in thermodynamic cycle system design and control for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    19. Wu, Yongfei & Huang, Shoujun & Alharthi, Yahya Z. & Wang, Yubin, 2025. "Market scheduling of emission-aware smart prosumers in smart grids: A multi-objective bi-level approach," Applied Energy, Elsevier, vol. 389(C).
    20. Li, Linyue & Li, Chenxiao & Alharthi, Yahya Z. & Wang, Yubin & Safaraliev, Murodbek, 2025. "A two-layer economic resilience model for distribution network restoration after natural disasters," Applied Energy, Elsevier, vol. 377(PC).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s0360544225005560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.