IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v328y2025ics0360544225021747.html
   My bibliography  Save this article

Load-following operation of supercritical CO2 power cycles under turbine speed control with different shaft configurations

Author

Listed:
  • Qin, Tianyang
  • Sun, Yuwei
  • Yan, Xinping
  • Yuan, Chengqing

Abstract

The supercritical CO2 power cycle offers high thermal efficiency and wide load-regulation capabilities, making it a promising technology for thermal power generation. Ensuring stable load-following operation requires an effective control strategy to regulate power output while maintaining key system parameters. This study develops and validates a dynamic model for a recompression supercritical CO2 power cycle based on an existing test bench, incorporating turbine speed control for output regulation. Various turbine and compressor shaft configurations are considered, including split-shaft arrangements, coaxial coupling of the main compressor and turbine, and a parallel two-turbine configuration with coaxial layouts for either the main compressor or recompressor (2-TAC). The results indicate that the 2-TAC configuration achieves the highest part-load thermal efficiency and operational stability while maintaining a compact shaft design, ideal for space-constrained applications such as transportation systems. Turbine speed control improves efficiency and stability compared to bypass and inventory control methods, requiring fewer control valves and reducing leakage points. However, it introduces overheating risks in the high-temperature recuperator, potentially affecting material integrity over prolonged operation. A modified control strategy is proposed to maintain a constant turbine outlet temperature through heat source power regulation, reducing thermal efficiency by 0.1 % and increasing recovery time by 221.2 s at 50 % load. This strategy enables stable operation down to 50 % load. Overall, the findings demonstrate the potential of turbine speed control under the 2-TAC design to enhance load-following performance and efficiency in supercritical CO2 power cycles, particularly for applications with spatial constraints.

Suggested Citation

  • Qin, Tianyang & Sun, Yuwei & Yan, Xinping & Yuan, Chengqing, 2025. "Load-following operation of supercritical CO2 power cycles under turbine speed control with different shaft configurations," Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021747
    DOI: 10.1016/j.energy.2025.136532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225021747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yifan & Zhou, Yujia & Yang, Yu & Li, Kailun & Lei, Xianliang & Li, Hongzhi, 2024. "Study on control strategies of the MW-scale supercritical CO2 recompression Brayton cycle for lead-cooled fast reactor," Energy, Elsevier, vol. 312(C).
    2. Wang, Xuan & Wang, Rui & Jin, Ming & Shu, Gequn & Tian, Hua & Pan, Jiaying, 2020. "Control of superheat of organic Rankine cycle under transient heat source based on deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    3. Hu, Hemin & Guo, Chaohong & Cai, Haofei & Jiang, Yuyan & Liang, Shiqiang & Guo, Yongxian, 2021. "Dynamic characteristics of the recuperator thermal performance in a S–CO2 Brayton cycle," Energy, Elsevier, vol. 214(C).
    4. Wang, Rui & Wang, Xuan & Bian, Xingyan & Zhang, Xuanang & Cai, Jinwen & Tian, Hua & Shu, Gequn & Wang, Mingtao, 2023. "An optimal split ratio in design and control of a recompression supercritical CO2 Brayton system," Energy, Elsevier, vol. 277(C).
    5. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    6. Wang, Rui & Wang, Xuan & Shu, Gequn & Tian, Hua & Cai, Jinwen & Bian, Xingyan & Li, Xinyu & Qin, Zheng & Shi, Lingfeng, 2022. "Comparison of different load-following control strategies of a sCO2 Brayton cycle under full load range," Energy, Elsevier, vol. 246(C).
    7. Wang, Zhu & Liu, Ming & Yan, Hui & Yan, Junjie, 2022. "Optimization on coordinate control strategy assisted by high-pressure extraction steam throttling to achieve flexible and efficient operation of thermal power plants," Energy, Elsevier, vol. 244(PA).
    8. Bian, Xingyan & Wang, Xuan & Wang, Rui & Cai, Jinwen & Tian, Hua & Shu, Gequn & Lin, Zhimin & Yu, Xiangyu & Shi, Lingfeng, 2022. "A comprehensive evaluation of the effect of different control valves on the dynamic performance of a recompression supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 248(C).
    9. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
    10. Liese, Eric & Albright, Jacob & Zitney, Stephen A., 2020. "Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle," Applied Energy, Elsevier, vol. 277(C).
    11. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
    12. Zhou, Yujia & Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Sun, Shan & Wu, Shuaishuai, 2024. "Off-design operation of supercritical CO2 Brayton cycle arranged with single and multiple turbomachinery shafts for lead-cooled fast reactor," Energy, Elsevier, vol. 299(C).
    13. Du, Yadong & Yang, Ce & Zhao, Ben & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Zhao, Wei, 2022. "Dynamic characteristics of a recompression supercritical CO2 cycle against variable operating conditions and temperature fluctuations of reactor outlet coolant," Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsawy, Tariq & Elsayed, Mohamed L. & Mohammed, Ramy H. & Mesalhy, Osama, 2024. "Accuracy assessment of the turbomachinery performance maps correction models used in dynamic characteristics of supercritical CO2 Brayton power cycle," Energy, Elsevier, vol. 309(C).
    2. Zhang, Yifan & Zhou, Yujia & Yang, Yu & Li, Kailun & Lei, Xianliang & Li, Hongzhi, 2024. "Study on control strategies of the MW-scale supercritical CO2 recompression Brayton cycle for lead-cooled fast reactor," Energy, Elsevier, vol. 312(C).
    3. Feng, Jiaqi & Wang, Junpeng & Zhang, Enbo & Bai, Bofeng, 2025. "Control mechanism of compressible volume for transcritical CO2 cycle power system," Energy, Elsevier, vol. 319(C).
    4. Li, Xiaoya & Chen, Xiaoting & Que, Wenshuai, 2025. "A review on machine learning techniques in thermodynamic cycle system design and control for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 218(C).
    5. Xu, Jiayuan & Zhao, Quanbin & Chong, Daotong & Xu, Xiaodi & Chen, Weixiong & Wang, Jinshi, 2024. "Study on the dynamic characteristics and control strategies of the coupled system of the FHR and SCO2 cycle," Energy, Elsevier, vol. 312(C).
    6. Zhang, Tao & Wu, Chuang & Li, Zhankui & Li, Bo, 2024. "Enhanced dynamic modeling of regenerative CO2 transcritical power cycles: Comparative analysis of Pham-corrected and conventional turbine models," Energy, Elsevier, vol. 313(C).
    7. Zhou, Yujia & Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Sun, Shan & Wu, Shuaishuai, 2024. "Off-design operation of supercritical CO2 Brayton cycle arranged with single and multiple turbomachinery shafts for lead-cooled fast reactor," Energy, Elsevier, vol. 299(C).
    8. Zhao, Quanbin & Xu, Jiayuan & Hou, Min & Chong, Daotong & Wang, Jinshi & Chen, Weixiong, 2024. "Dynamic characteristic analysis of SCO2 Brayton cycle under different turbine back pressure modes," Energy, Elsevier, vol. 293(C).
    9. Li, Xinyu & Guan, Chaoran & Chai, Xiang & Liu, Xiaojing, 2025. "Study on the load-following ability of HeXe cooled SMR with close Brayton cycle for renewable energy integration," Energy, Elsevier, vol. 318(C).
    10. Wang, Rui & Tian, Hua & Wang, Xuan & Peng, Kuanyun, 2025. "Experimental investigation of all-regime control for supercritical CO2 Brayton cycle system," Applied Energy, Elsevier, vol. 392(C).
    11. Du, Yadong & Yang, Ce & Zhao, Ben & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Zhao, Wei, 2022. "Dynamic characteristics of a recompression supercritical CO2 cycle against variable operating conditions and temperature fluctuations of reactor outlet coolant," Energy, Elsevier, vol. 258(C).
    12. Liu, Kairui & Wang, Limin & Bai, Wengang & Che, Defu, 2025. "Comparative study on dynamic characteristics of 600 MW supercritical coal-fired boilers using CO2 and water as working fluids," Energy, Elsevier, vol. 314(C).
    13. Cao, Yue & Zhan, Jun & Jia, Boqing & Chen, Ranjing & Si, Fengqi, 2023. "Optimum design of bivariate operation strategy for a supercritical/ transcritical CO2 hybrid waste heat recovery system driven by gas turbine exhaust," Energy, Elsevier, vol. 284(C).
    14. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    15. Qiu, Leilei & Liao, Shengyong & Fan, Sui & Sun, Peiwei & Wei, Xinyu, 2023. "Dynamic modelling and control system design of micro-high-temperature gas-cooled reactor with helium brayton cycle," Energy, Elsevier, vol. 278(PB).
    16. Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).
    17. Chen, Junlin & Cheng, Keyong & Li, Xunfeng & Guo, Jiangfeng & Huai, Xiulan, 2024. "Thermodynamic analysis and equilibration response time prediction of recuperator in the SCO2 Brayton cycle," Energy, Elsevier, vol. 308(C).
    18. Liu, Yaqin & Xu, Jinliang & Wang, Tianze, 2025. "Comparative study on supercritical carbon dioxide cycle using air-cooler and water-cooler," Energy, Elsevier, vol. 314(C).
    19. Zhao, Bingtao & Yao, Jiacheng & Su, Yaxin, 2023. "Performance response to operating-load fluctuations for Sub-megawatt-scale recuperated supercritical CO2 Brayton cycles: Characteristics and improvement," Renewable Energy, Elsevier, vol. 206(C), pages 686-693.
    20. Du, Yadong & Yu, Zhiyi & Yang, Ce & Wang, Haimei & Ernest Chua, Kian Jon, 2024. "A recompression supercritical CO2 cycle using heat source storage to achieve low-frequency reactor regulation: Analysis and optimization of load capacity under safe compressor operation," Energy, Elsevier, vol. 301(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:328:y:2025:i:c:s0360544225021747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.