IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics036054422404074x.html
   My bibliography  Save this article

Comparative study on dynamic characteristics of 600 MW supercritical coal-fired boilers using CO2 and water as working fluids

Author

Listed:
  • Liu, Kairui
  • Wang, Limin
  • Bai, Wengang
  • Che, Defu

Abstract

Currently, little attention has been paid to the dynamic characteristics of the supercritical CO2 (S-CO2) boiler, which dominate the dynamic performance of the S-CO2 coal-fired power generation system. In this study, a novel 600 MW S-CO2 boiler design was proposed, and its dynamic model was established and validated. The dynamic characteristics of the S-CO2 boiler under step disturbances in working fluid flow rate and coal feeding rate were analyzed and compared with those of a supercritical water boiler. When the CO2 mass flow rate and coal feeding rate were suddenly reduced by 5 %, the main CO2 temperature changed by +5.52 °C and −6.11 °C, with response times of 220 s and 250 s, respectively. The reheat CO2 temperature changed by +5.46 °C and −4.82 °C, with response times of 110 s and 200 s, respectively. Among all heating surfaces, the split economizer exhibited the longest response time. The S-CO2 boiler demonstrated a response time approximately 700 s shorter than that of the supercritical water boiler under identical disturbance conditions, with the variation in superheater outlet temperature being only about one-sixth as large. These results may provide valuable insights into optimizing operation and designing control strategies for the S-CO2 boiler.

Suggested Citation

  • Liu, Kairui & Wang, Limin & Bai, Wengang & Che, Defu, 2025. "Comparative study on dynamic characteristics of 600 MW supercritical coal-fired boilers using CO2 and water as working fluids," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s036054422404074x
    DOI: 10.1016/j.energy.2024.134296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422404074X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tong, Yongjing & Duan, Liqiang & Pang, Liping, 2021. "Off-design performance analysis of a new 300 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 216(C).
    2. Park, Joo Hyun & Bae, Sung Won & Park, Hyun Sun & Cha, Jae Eun & Kim, Moo Hwan, 2018. "Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS," Energy, Elsevier, vol. 147(C), pages 1030-1043.
    3. Wang, Chaoyang & Qiao, Yongqiang & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2020. "Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler," Applied Energy, Elsevier, vol. 260(C).
    4. Zhou, Jing & Xiang, Jun & Su, Sheng & Hu, Song & Wang, Yi & Xu, Kai & Xu, Jun & He, Limo & Ling, Peng & Zhu, Meng, 2019. "Key issues and practical design for cooling wall of supercritical carbon dioxide coal-fired boiler," Energy, Elsevier, vol. 186(C).
    5. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    6. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
    7. Miao, Zheng & Chen, Linhao & Han, Zunhao & Xu, Jinliang, 2024. "A novel boiler partial flow arrangement and partial load control strategies of a S-CO2 coal-fired power generation system," Energy, Elsevier, vol. 311(C).
    8. Bugge, Jørgen & Kjær, Sven & Blum, Rudolph, 2006. "High-efficiency coal-fired power plants development and perspectives," Energy, Elsevier, vol. 31(10), pages 1437-1445.
    9. Bai, Wengang & Li, Hongzhi & Zhang, Lei & Zhang, Yifan & Yang, Yu & Zhang, Chun & Yao, Mingyu, 2021. "Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant," Energy, Elsevier, vol. 222(C).
    10. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    11. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
    12. Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
    13. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    14. Zhu, Zhongliang & Cheng, Yi & Xiao, Bo & Khan, Hasan Izhar & Xu, Hong & Zhang, Naiqiang, 2019. "Corrosion behavior of ferritic and ferritic-martensitic steels in supercritical carbon dioxide," Energy, Elsevier, vol. 175(C), pages 1075-1084.
    15. Mecheri, Mounir & Le Moullec, Yann, 2016. "Supercritical CO2 Brayton cycles for coal-fired power plants," Energy, Elsevier, vol. 103(C), pages 758-771.
    16. Liese, Eric & Albright, Jacob & Zitney, Stephen A., 2020. "Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle," Applied Energy, Elsevier, vol. 277(C).
    17. Liu, Kairui & Wang, Chao & Wang, Limin & Liu, Bin & Ye, Maojing & Guo, Yalong & Che, Defu, 2023. "Dynamic performance analysis and control strategy optimization for supercritical coal-fired boiler: A dynamic simulation," Energy, Elsevier, vol. 282(C).
    18. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhaozhi & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2023. "Optimal design and thermodynamic evaluation of supercritical CO2 oxy-coal circulating fluidized bed power generation systems," Energy, Elsevier, vol. 277(C).
    2. Liu, Yaqin & Xu, Jinliang & Wang, Tianze, 2025. "Comparative study on supercritical carbon dioxide cycle using air-cooler and water-cooler," Energy, Elsevier, vol. 314(C).
    3. Yang, D.L. & Tang, G.H. & Li, X.L. & Fan, Y.H., 2022. "Capacity-dependent configurations of S–CO2 coal-fired boiler by overall analysis with a unified model," Energy, Elsevier, vol. 245(C).
    4. Fan, Y.H. & Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L., 2022. "Design of S–CO2 coal-fired power system based on the multiscale analysis platform," Energy, Elsevier, vol. 240(C).
    5. Miao, Zheng & Chen, Linhao & Han, Zunhao & Xu, Jinliang, 2024. "A novel boiler partial flow arrangement and partial load control strategies of a S-CO2 coal-fired power generation system," Energy, Elsevier, vol. 311(C).
    6. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    7. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    8. Liu, Chao & Xu, Jinliang & Li, Mingjia & Wang, Qingyang & Liu, Guanglin, 2022. "The comprehensive solution to decrease cooling wall temperatures of sCO2 boiler for coal fired power plant," Energy, Elsevier, vol. 252(C).
    9. Zhang, Yifan & Zhou, Yujia & Yang, Yu & Li, Kailun & Lei, Xianliang & Li, Hongzhi, 2024. "Study on control strategies of the MW-scale supercritical CO2 recompression Brayton cycle for lead-cooled fast reactor," Energy, Elsevier, vol. 312(C).
    10. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
    12. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    13. Liu, Xuejiao & Zhong, Wenqi & Li, Pingjiao & Xiang, Jun & Liu, Guoyao, 2019. "Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle," Energy, Elsevier, vol. 176(C), pages 468-478.
    14. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2022. "Conceptual design of a small-capacity supercritical CO2 coal-fired circulating fluidized bed boiler by an improved design calculation method," Energy, Elsevier, vol. 255(C).
    15. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    16. Zhou, Jing & Zhu, Meng & Su, Sheng & Chen, Lei & Xu, Jun & Hu, Song & Wang, Yi & Jiang, Long & Zhong, Wenqi & Xiang, Jun, 2020. "Numerical analysis and modified thermodynamic calculation methods for the furnace in the 1000 MW supercritical CO2 coal-fired boiler," Energy, Elsevier, vol. 212(C).
    17. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    18. Yang, D.L. & Tang, G.H. & Sheng, Q. & Li, X.L. & Fan, Y.H. & He, Y.L. & Luo, K.H., 2023. "Effects of multiple insufficient charging and discharging on compressed carbon dioxide energy storage," Energy, Elsevier, vol. 278(PA).
    19. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    20. Bai, Wengang & Li, Hongzhi & Zhang, Lei & Zhang, Yifan & Yang, Yu & Zhang, Chun & Yao, Mingyu, 2021. "Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s036054422404074x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.