IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222016838.html
   My bibliography  Save this article

Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants

Author

Listed:
  • Bai, Wengang
  • Li, Hongzhi
  • Zhang, Xuwei
  • Qiao, Yongqiang
  • Zhang, Chun
  • Gao, Wei
  • Yao, Mingyu

Abstract

To overcome the poor cycle thermal efficiency of supercritical CO2 Brayton cycle caused by the high rejection temperature used for solar power plants, mixture of CO2–SF6 as working fluid for the Brayton cycle system is proposed and evaluated. Detailed thermodynamic analysis is conducted to the CO2–SF6 mixture Brayton cycle compared with the referenced s-CO2 cycle. Influence of MC inlet temperature and mole fraction of SF6 on the thermodynamic performances is discussed. Moreover, exergy efficiencies and exergy loss distribution of the components in the CO2–SF6 mixture Brayton cycle are analyzed. The results suggest that the system cycle thermal efficiencies of CO2–SF6 mixture cycle and s–CO2 cycle both decrease with the increase of the MC inlet temperature, however, the thermal efficiency of CO2–SF6 mixture cycle is significantly higher than that of s-CO2 cycle. An optimal mole fraction of SF6 exists in the CO2–SF6 mixture for the CO2–SF6 mixture cycle. The optimal value is 0.356 in this context. The heliostat field and solar receiver has the lowest exergy efficiency among all the components of the CO2–SF6 mixture cycle, which is as low as 31.59%.

Suggested Citation

  • Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222016838
    DOI: 10.1016/j.energy.2022.124780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222016838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    2. de la Calle, Alberto & Bayon, Alicia & Soo Too, Yen Chean, 2018. "Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions," Energy, Elsevier, vol. 153(C), pages 1016-1027.
    3. Bonalumi, D. & Lasala, S. & Macchi, E., 2020. "CO2-TiCl4 working fluid for high-temperature heat source power cycles and solar application," Renewable Energy, Elsevier, vol. 147(P3), pages 2842-2854.
    4. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    5. Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
    6. Bai, Wengang & Li, Hongzhi & Zhang, Lei & Zhang, Yifan & Yang, Yu & Zhang, Chun & Yao, Mingyu, 2021. "Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant," Energy, Elsevier, vol. 222(C).
    7. Hu, Lian & Chen, Deqi & Huang, Yanping & Li, Le & Cao, Yiding & Yuan, Dewen & Wang, Junfeng & Pan, Liangming, 2015. "Investigation on the performance of the supercritical Brayton cycle with CO2-based binary mixture as working fluid for an energy transportation system of a nuclear reactor," Energy, Elsevier, vol. 89(C), pages 874-886.
    8. Ellingwood, Kevin & Mohammadi, Kasra & Powell, Kody, 2020. "Dynamic optimization and economic evaluation of flexible heat integration in a hybrid concentrated solar power plant," Applied Energy, Elsevier, vol. 276(C).
    9. Le Moullec, Yann, 2013. "Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 49(C), pages 32-46.
    10. Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.
    11. Sun, Yubiao & Duniam, Sam & Guan, Zhiqiang & Gurgenci, Hal & Dong, Peixin & Wang, Jianyong & Hooman, Kamel, 2019. "Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Mecheri, Mounir & Le Moullec, Yann, 2016. "Supercritical CO2 Brayton cycles for coal-fired power plants," Energy, Elsevier, vol. 103(C), pages 758-771.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    2. Ma, Yuegeng & Liu, Ming & Yan, Junjie & Liu, Jiping, 2017. "Thermodynamic study of main compression intercooling effects on supercritical CO2 recompression Brayton cycle," Energy, Elsevier, vol. 140(P1), pages 746-756.
    3. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    5. Niu, Xiaojuan & Ma, Ning & Bu, Zhengkun & Hong, Wenpeng & Li, Haoran, 2022. "Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application," Energy, Elsevier, vol. 254(PA).
    6. Sun, Lei & Liu, Tianyuan & Wang, Ding & Huang, Chengming & Xie, Yonghui, 2022. "Deep learning method based on graph neural network for performance prediction of supercritical CO2 power systems," Applied Energy, Elsevier, vol. 324(C).
    7. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    8. S. Mohammad S. Mahmoudi & Ata D. Akbari & Marc A. Rosen, 2016. "Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle," Sustainability, MDPI, vol. 8(10), pages 1-19, October.
    9. Jeong, Yongju & Son, Seongmin & Cho, Seong Kuk & Baik, Seungjoon & Lee, Jeong Ik, 2020. "Evaluation of supercritical CO2 compressor off-design performance prediction methods," Energy, Elsevier, vol. 213(C).
    10. Bai, Wengang & Li, Hongzhi & Zhang, Lei & Zhang, Yifan & Yang, Yu & Zhang, Chun & Yao, Mingyu, 2021. "Energy and exergy analyses of an improved recompression supercritical CO2 cycle for coal-fired power plant," Energy, Elsevier, vol. 222(C).
    11. Li, Zhaozhi & Shao, Yingjuan & Zhong, Wenqi & Liu, Hao, 2023. "Optimal design and thermodynamic evaluation of supercritical CO2 oxy-coal circulating fluidized bed power generation systems," Energy, Elsevier, vol. 277(C).
    12. Wang, Lin & Pan, Liang-ming & Wang, Junfeng & Chen, Deqi & Huang, Yanping & Hu, Lian, 2019. "Investigation on the temperature sensitivity of the S-CO2 Brayton cycle efficiency," Energy, Elsevier, vol. 178(C), pages 739-750.
    13. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Paul Tafur-Escanta & Robert Valencia-Chapi & Ignacio López-Paniagua & Luis Coco-Enríquez & Javier Muñoz-Antón, 2021. "Supercritical CO 2 Binary Mixtures for Recompression Brayton s-CO 2 Power Cycles Coupled to Solar Thermal Energy Plants," Energies, MDPI, vol. 14(13), pages 1-27, July.
    15. Ma, Yuegeng & Morozyuk, Tatiana & Liu, Ming & Yan, Junjie & Liu, Jiping, 2019. "Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach," Applied Energy, Elsevier, vol. 242(C), pages 1134-1154.
    16. Guo, Jia-Qi & Li, Ming-Jia & He, Ya-Ling & Xu, Jin-Liang, 2019. "A study of new method and comprehensive evaluation on the improved performance of solar power tower plant with the CO2-based mixture cycles," Applied Energy, Elsevier, vol. 256(C).
    17. Liu, Zecheng & Zhong, Wenqi & Shao, Yingjuan & Liu, Xuejiao, 2022. "Conceptual design of a small-capacity supercritical CO2 coal-fired circulating fluidized bed boiler by an improved design calculation method," Energy, Elsevier, vol. 255(C).
    18. Yang, Yueming & Wang, Xurong & Hooman, Kamel & Han, Kuihua & Xu, Jinliang & He, Suoying & Qi, Jianhui, 2023. "Effect of CO2-based binary mixtures on the performance of radial-inflow turbines for the supercritical CO2 cycles," Energy, Elsevier, vol. 266(C).
    19. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
    20. Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222016838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.