Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.126100
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
- Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
- Wu, Huijuan & Meng, Keqilao & Fan, Daoerji & Zhang, Zhanqiang & Liu, Qing, 2022. "Multistep short-term wind speed forecasting using transformer," Energy, Elsevier, vol. 261(PA).
- Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
- Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
- Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
- Yang, Qiuling & Deng, Changhong & Chang, Xiqiang, 2022. "Ultra-short-term / short-term wind speed prediction based on improved singular spectrum analysis," Renewable Energy, Elsevier, vol. 184(C), pages 36-44.
- Lu, Peng & Ye, Lin & Pei, Ming & Zhao, Yongning & Dai, Binhua & Li, Zhuo, 2022. "Short-term wind power forecasting based on meteorological feature extraction and optimization strategy," Renewable Energy, Elsevier, vol. 184(C), pages 642-661.
- Tian, Chaonan & Niu, Tong & Wei, Wei, 2022. "Developing a wind power forecasting system based on deep learning with attention mechanism," Energy, Elsevier, vol. 257(C).
- Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
- Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
- Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
- Niu, Dongxiao & Sun, Lijie & Yu, Min & Wang, Keke, 2022. "Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model," Energy, Elsevier, vol. 254(PA).
- Sun, Zexian & Zhao, Mingyu & Zhao, Guohong, 2022. "Hybrid model based on VMD decomposition, clustering analysis, long short memory network, ensemble learning and error complementation for short-term wind speed forecasting assisted by Flink platform," Energy, Elsevier, vol. 261(PB).
- López, Germánico & Arboleya, Pablo, 2022. "Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador," Renewable Energy, Elsevier, vol. 183(C), pages 351-368.
- Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).
- Wu, Jie & Li, Na & Zhao, Yan & Wang, Jujie, 2022. "Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting," Energy, Elsevier, vol. 242(C).
- Ye, Lin & Li, Yilin & Pei, Ming & Zhao, Yongning & Li, Zhuo & Lu, Peng, 2022. "A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching," Applied Energy, Elsevier, vol. 327(C).
- Han, Yan & Mi, Lihua & Shen, Lian & Cai, C.S. & Liu, Yuchen & Li, Kai & Xu, Guoji, 2022. "A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting," Applied Energy, Elsevier, vol. 312(C).
- Méndez-Gordillo, Alma Rosa & Campos-Amezcua, Rafael & Cadenas, Erasmo, 2022. "Wind speed forecasting using a hybrid model considering the turbulence of the airflow," Renewable Energy, Elsevier, vol. 196(C), pages 422-431.
- Duan, Jikai & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Zuo, Hongchao & Bai, Yulong & Chen, Bolong, 2022. "A combined short-term wind speed forecasting model based on CNN–RNN and linear regression optimization considering error," Renewable Energy, Elsevier, vol. 200(C), pages 788-808.
- Zhang, Shuai & Chen, Yong & Xiao, Jiuhong & Zhang, Wenyu & Feng, Ruijun, 2021. "Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism," Renewable Energy, Elsevier, vol. 174(C), pages 688-704.
- Khazaei, Sahra & Ehsan, Mehdi & Soleymani, Soodabeh & Mohammadnezhad-Shourkaei, Hosein, 2022. "A high-accuracy hybrid method for short-term wind power forecasting," Energy, Elsevier, vol. 238(PC).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liang, Yang & Zhang, Dongqin & Zhang, Jize & Hu, Gang, 2024. "A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model," Energy, Elsevier, vol. 313(C).
- Yang, Mao & Huang, Yutong & Xu, Chuanyu & Liu, Chenyu & Dai, Bozhi, 2025. "Review of several key processes in wind power forecasting: Mathematical formulations, scientific problems, and logical relations," Applied Energy, Elsevier, vol. 377(PC).
- Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
- Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
- Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
- Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
- Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
- Wu, Binrong & Wang, Lin & Zeng, Yu-Rong, 2022. "Interpretable wind speed prediction with multivariate time series and temporal fusion transformers," Energy, Elsevier, vol. 252(C).
- Sun, Shaolong & Du, Zongjuan & Jin, Kun & Li, Hongtao & Wang, Shouyang, 2023. "Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy," Applied Energy, Elsevier, vol. 350(C).
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Sun, Xiaoying & Liu, Haizhong, 2024. "Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S," Energy, Elsevier, vol. 305(C).
- Zhang, Dongqin & Hu, Gang & Song, Jie & Gao, Huanxiang & Ren, Hehe & Chen, Wenli, 2024. "A novel spatio-temporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model," Energy, Elsevier, vol. 288(C).
- Liu, Lei & Wang, Xinyu & Dong, Xue & Chen, Kang & Chen, Qiuju & Li, Bin, 2024. "Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series," Applied Energy, Elsevier, vol. 374(C).
- Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
- Zhao, Ning & Su, Yi & Dai, Xianxing & Jia, Shaomin & Wang, Xuewei, 2024. "A new decomposition-ensemble strategy fusion with correntropy optimization learning algorithms for short-term wind speed prediction," Applied Energy, Elsevier, vol. 369(C).
- Li, Yanhui & Sun, Kaixuan & Yao, Qi & Wang, Lin, 2024. "A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm," Energy, Elsevier, vol. 286(C).
- Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
- Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
- Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
- Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
More about this item
Keywords
Wind speed forecasting; Feature selection; Multi-objective optimization; Singular spectrum analysis; Convolutional long short-term memory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029863. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.