IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp526-536.html
   My bibliography  Save this article

Spatio-temporal wind speed prediction based on Clayton Copula function with deep learning fusion

Author

Listed:
  • Huang, Yu
  • Zhang, Bingzhe
  • Pang, Huizhen
  • Wang, Biao
  • Lee, Kwang Y.
  • Xie, Jiale
  • Jin, Yupeng

Abstract

Accurate prediction of wind speed plays an important role in increasing the power generation of wind turbines and realizing efficient use of wind energy. However, due to the large number of wind turbines in the wind farm and the complex wake effects between the units, the coupling degree and spatial correlation of the wind speed of the wind turbines are increased. Accordingly, this paper proposes a wind speed prediction model based on spatio-temporal dependency analysis. The proposed model first uses long short-term memory(LSTM) neural network to predict the wind speed of each wind turbine to obtain its residuals, which can extract the time correlation of the wind-speed series; Then by applying the Clayton Copula function to analyze the correlation between the residual series and wind-speed series to get the joint-distribution function. The joint-distribution function can be used to calculate the prediction error of the wind speed and complete the wind speed prediction. The validity of the method in this work is verified using the measured wind-speed data of a wind farm. Experimental results show that the method effectively solves the problem of finding spatio-temporal dependency of wind speed and significantly improves the prediction accuracy of wind speed.

Suggested Citation

  • Huang, Yu & Zhang, Bingzhe & Pang, Huizhen & Wang, Biao & Lee, Kwang Y. & Xie, Jiale & Jin, Yupeng, 2022. "Spatio-temporal wind speed prediction based on Clayton Copula function with deep learning fusion," Renewable Energy, Elsevier, vol. 192(C), pages 526-536.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:526-536
    DOI: 10.1016/j.renene.2022.04.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200516X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xuyang & Qiu, Yingning & Feng, Yanhui & Wang, Zheng, 2021. "Wind turbine power prediction considering wake effects with dual laser beam LiDAR measured yaw misalignment," Applied Energy, Elsevier, vol. 299(C).
    2. Nelsen, Roger B., 1997. "Dependence and Order in Families of Archimedean Copulas," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 111-122, January.
    3. Sun, Can & Bie, Zhaohong & Xie, Min & Jiang, Jiangfeng, 2016. "Fuzzy copula model for wind speed correlation and its application in wind curtailment evaluation," Renewable Energy, Elsevier, vol. 93(C), pages 68-76.
    4. Bingchun Liu & Shijie Zhao & Xiaogang Yu & Lei Zhang & Qingshan Wang, 2020. "A Novel Deep Learning Approach for Wind Power Forecasting Based on WD-LSTM Model," Energies, MDPI, vol. 13(18), pages 1-17, September.
    5. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2012. "Wake flow model of wind turbine using particle simulation," Renewable Energy, Elsevier, vol. 41(C), pages 185-190.
    6. Qiaomu Zhu & Jinfu Chen & Lin Zhu & Xianzhong Duan & Yilu Liu, 2018. "Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach," Energies, MDPI, vol. 11(4), pages 1-18, March.
    7. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Yang, Qibo & Hsu, Yuan-Ming & Chen, Yudi & Lee, Jay, 2019. "A combined filtering strategy for short term and long term wind speed prediction with improved accuracy," Renewable Energy, Elsevier, vol. 136(C), pages 1082-1090.
    8. Shiyu Liu & Gengfeng Li & Haipeng Xie & Xifan Wang, 2017. "Correlation Characteristic Analysis for Wind Speed in Different Geographical Hierarchies," Energies, MDPI, vol. 10(2), pages 1-20, February.
    9. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    10. Herp, Jürgen & Poulsen, Uffe V. & Greiner, Martin, 2015. "Wind farm power optimization including flow variability," Renewable Energy, Elsevier, vol. 81(C), pages 173-181.
    11. Ye, Lin & Zhao, Yongning & Zeng, Cheng & Zhang, Cihang, 2017. "Short-term wind power prediction based on spatial model," Renewable Energy, Elsevier, vol. 101(C), pages 1067-1074.
    12. Wenlei Bai & Duehee Lee & Kwang Y. Lee, 2017. "Stochastic Dynamic AC Optimal Power Flow Based on a Multivariate Short-Term Wind Power Scenario Forecasting Model," Energies, MDPI, vol. 10(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongran Song & Xiao Tan & Qian Huang & Li Wang & Mi Dong & Jian Yang & Solomin Evgeny, 2024. "Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023," Energies, MDPI, vol. 17(6), pages 1-22, March.
    2. Ma, Long & Huang, Ling & Shi, Huifeng, 2023. "A novel spatial–temporal generative autoencoder for wind speed uncertainty forecasting," Energy, Elsevier, vol. 282(C).
    3. Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
    4. Xiangqian Li & Keke Li & Siqi Shen & Yaxin Tian, 2023. "Exploring Time Series Models for Wind Speed Forecasting: A Comparative Analysis," Energies, MDPI, vol. 16(23), pages 1-22, November.
    5. Li, Yang & Shen, Xiaojun & Zhou, Chongcheng, 2023. "Dynamic multi-turbines spatiotemporal correlation model enabled digital twin technology for real-time wind speed prediction," Renewable Energy, Elsevier, vol. 203(C), pages 841-853.
    6. Liu, Guanjun & Wang, Yun & Qin, Hui & Shen, Keyan & Liu, Shuai & Shen, Qin & Qu, Yuhua & Zhou, Jianzhong, 2023. "Probabilistic spatiotemporal forecasting of wind speed based on multi-network deep ensembles method," Renewable Energy, Elsevier, vol. 209(C), pages 231-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Ling & Zhou, Bin & Or, Siu Wing & Cao, Yijia & Wang, Huaizhi & Li, Yong & Chan, Ka Wing, 2021. "Spatio-temporal wind speed prediction of multiple wind farms using capsule network," Renewable Energy, Elsevier, vol. 175(C), pages 718-730.
    2. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
    3. Xiaoxia, Gao & Luqing, Li & Shaohai, Zhang & Xiaoxun, Zhu & Haiying, Sun & Hongxing, Yang & Yu, Wang & Hao, Lu, 2022. "LiDAR-based observation and derivation of large-scale wind turbine's wake expansion model downstream of a hill," Energy, Elsevier, vol. 259(C).
    4. Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
    5. Kui Yang & Bofu Wang & Xiang Qiu & Jiahua Li & Yuze Wang & Yulu Liu, 2022. "Multi-Step Short-Term Wind Speed Prediction Models Based on Adaptive Robust Decomposition Coupled with Deep Gated Recurrent Unit," Energies, MDPI, vol. 15(12), pages 1-24, June.
    6. Xiaojun Shen & Chongcheng Zhou & Xuejiao Fu, 2018. "Study of Time and Meteorological Characteristics of Wind Speed Correlation in Flat Terrains Based on Operation Data," Energies, MDPI, vol. 11(1), pages 1-16, January.
    7. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    8. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    9. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    10. Kai Ma & Shubing Hu & Jie Yang & Chunxia Dou & Josep M. Guerrero, 2017. "Energy Trading and Pricing in Microgrids with Uncertain Energy Supply: A Three-Stage Hierarchical Game Approach," Energies, MDPI, vol. 10(5), pages 1-16, May.
    11. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    12. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    13. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. repec:hum:wpaper:sfb649dp2009-014 is not listed on IDEAS
    15. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    16. Yuzgec, Ugur & Dokur, Emrah & Balci, Mehmet, 2024. "A novel hybrid model based on Empirical Mode Decomposition and Echo State Network for wind power forecasting," Energy, Elsevier, vol. 300(C).
    17. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    18. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    19. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    20. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    21. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:526-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.