IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v60y1997i1p111-122.html
   My bibliography  Save this article

Dependence and Order in Families of Archimedean Copulas

Author

Listed:
  • Nelsen, Roger B.

Abstract

The copula for a bivariate distribution functionH(x, y) with marginal distribution functionsF(x) andG(y) is the functionCdefined byH(x, y)=C(F(x), G(y)).Cis called Archimedean ifC(u, v)=[phi]-1([phi](u)+[phi](v)), where[phi]is a convex decreasing continuous function on (0, 1] with[phi](1)=0. A copula has lower tail dependence ifC(u, u)/uconverges to a constant[gamma]in (0, 1] asu-->0+; and has upper tail dependence ifC(u, u)/(1-u) converges to a constant[delta]in (0, 1] asu-->1-whereCdenotes the survival function corresponding toC. In this paper we develop methods for generating families of Archimedean copulas with arbitrary values of[gamma]and[delta], and present extensions to higher dimensions. We also investigate limiting cases and the concordance ordering of these families. In the process, we present answers to two open problems posed by Joe (1993,J. Multivariate Anal.46262-282).

Suggested Citation

  • Nelsen, Roger B., 1997. "Dependence and Order in Families of Archimedean Copulas," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 111-122, January.
  • Handle: RePEc:eee:jmvana:v:60:y:1997:i:1:p:111-122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(96)91646-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mesfioui, Mhamed & Quessy, Jean-François, 2008. "Dependence structure of conditional Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 372-385, March.
    2. A. Sancetta & Satchell, S.E., 2001. "Bernstein Approximations to the Copula Function and Portfolio Optimization," Cambridge Working Papers in Economics 0105, Faculty of Economics, University of Cambridge.
    3. Mulero, Julio & Pellerey, Franco & Rodríguez-Griñolo, Rosario, 2010. "Stochastic comparisons for time transformed exponential models," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 328-333, April.
    4. Huang, Jen-Jsung & Lee, Kuo-Jung & Liang, Hueimei & Lin, Wei-Fu, 2009. "Estimating value at risk of portfolio by conditional copula-GARCH method," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 315-324, December.
    5. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    6. Ostap Okhrin & Yarema Okhrin & Wolfgang Schmid, 2009. "Properties of Hierarchical Archimedean Copulas," SFB 649 Discussion Papers SFB649DP2009-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Frahm, Gabriel, 2006. "On the extremal dependence coefficient of multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1470-1481, August.
    8. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    9. Quessy, Jean-François & Bahraoui, Tarik, 2014. "Weak convergence of empirical and bootstrapped C-power processes and application to copula goodness-of-fit," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 16-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:60:y:1997:i:1:p:111-122. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.