IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v27y2015i4p442-459.html
   My bibliography  Save this article

Kendall's tau and Spearman's rho for n -dimensional Archimedean copulas and their asymptotic properties

Author

Listed:
  • Włodzimierz Wysocki

Abstract

We derive formulas for the dependence measures and for Archimedean n -copulas. These measures are n -dimensional analogues of the popular nonparametric dependence measures: Kendall's tau and Spearman's rho. For we obtain two formulas, both involving integrals of univariate functions. The formulas for involve integrals of n -variate functions. We also obtain formulas for the three measures for copulas whose additive generators have completely monotone inverses. These formulas feature integrals of 2-variate functions (we use the Laplace transform). We study the asymptotic properties of the sequences and , for a sequence of Archimedean copulas with a common additive generator. We also investigate the limit of this sequence, which is an infinite-dimensional copula on the Hilbert cube.

Suggested Citation

  • Włodzimierz Wysocki, 2015. "Kendall's tau and Spearman's rho for n -dimensional Archimedean copulas and their asymptotic properties," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 442-459, December.
  • Handle: RePEc:taf:gnstxx:v:27:y:2015:i:4:p:442-459
    DOI: 10.1080/10485252.2015.1070849
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2015.1070849
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2015.1070849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelsen, Roger B., 1997. "Dependence and Order in Families of Archimedean Copulas," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 111-122, January.
    2. Schmid, Friedrich & Schmidt, Rafael, 2007. "Multivariate extensions of Spearman's rho and related statistics," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 407-416, February.
    3. Charpentier, Arthur & Segers, Johan, 2008. "Convergence of Archimedean copulas," Statistics & Probability Letters, Elsevier, vol. 78(4), pages 412-419, March.
    4. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    5. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    6. McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
    7. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    8. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Cerqueti & Francesco Cesarone & Maria C. Heusch & Carlo D. Mottura, 2024. "A new family of modified Gaussian copulas for market consistent valuation of government guarantees," Review of Managerial Science, Springer, vol. 18(7), pages 1985-2005, July.
    2. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    3. Gijbels Irène & Matterne Margot, 2021. "Study of partial and average conditional Kendall’s tau," Dependence Modeling, De Gruyter, vol. 9(1), pages 82-120, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Woojoo & Ahn, Jae Youn, 2014. "On the multidimensional extension of countermonotonicity and its applications," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 68-79.
    2. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    3. Cooray Kahadawala, 2018. "Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family," Dependence Modeling, De Gruyter, vol. 6(1), pages 1-18, February.
    4. Charpentier, Arthur & Segers, Johan, 2007. "Lower tail dependence for Archimedean copulas: Characterizations and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 525-532, May.
    5. Hoyle, Edward & Mengütürk, Levent Ali, 2013. "Archimedean survival processes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 1-15.
    6. Grothe, Oliver & Schnieders, Julius & Segers, Johan, 2013. "Measuring Association and Dependence Between Random Vectors," LIDAM Discussion Papers ISBA 2013026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    8. Hofert, Marius & Vrins, Frédéric, 2013. "Sibuya copulas," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 318-337.
    9. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    10. Fuchs, Sebastian & Tschimpke, Marco, 2024. "A novel positive dependence property and its impact on a popular class of concordance measures," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    11. Christian Genest & Johanna Nešlehová & Jean-François Quessy, 2012. "Tests of symmetry for bivariate copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 811-834, August.
    12. Salim Bouzebda, 2023. "On Weak Convergence of the Bootstrap Copula Empirical Process with Random Resample Size," Stats, MDPI, vol. 6(1), pages 1-16, February.
    13. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    14. Mesfioui, Mhamed & Quessy, Jean-François, 2008. "Dependence structure of conditional Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 372-385, March.
    15. Mulero, Julio & Pellerey, Franco & Rodríguez-Griñolo, Rosario, 2010. "Stochastic comparisons for time transformed exponential models," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 328-333, April.
    16. César García‐Gómez & Ana Pérez & Mercedes Prieto‐Alaiz, 2021. "Copula‐based analysis of multivariate dependence patterns between dimensions of poverty in Europe," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(1), pages 165-195, March.
    17. Mhamed Mesfioui & Julien Trufin, 2022. "Bounds on Multivariate Kendall’s Tau and Spearman’s Rho for Zero-Inflated Continuous Variables and their Application to Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1051-1059, June.
    18. Gijbels, Irène & Kika, Vojtěch & Omelka, Marek, 2021. "On the specification of multivariate association measures and their behaviour with increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    19. Jean-David Fermanian & Olivier Lopez, 2015. "Single-index copulae," Working Papers 2015-12, Center for Research in Economics and Statistics.
    20. Jae Youn Ahn, 2015. "Negative Dependence Concept in Copulas and the Marginal Free Herd Behavior Index," Papers 1503.03180, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:27:y:2015:i:4:p:442-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.