IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp764-783.html
   My bibliography  Save this article

Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems

Author

Listed:
  • Severiano, Carlos A.
  • Silva, Petrônio Cândido de Lima e
  • Weiss Cohen, Miri
  • Guimarães, Frederico Gadelha

Abstract

Forecasting in Renewable Energy Systems is a challenging problem since their inputs present some uncertainties in the data distribution. On the other hand, there is an increasing volume of information recorded by such systems that can be explored by a forecasting model with the expectation of improved performance. This work introduces e-MVFTS (evolving Multivariate Fuzzy Time Series), an evolving forecasting model based on Fuzzy Time Series, and an evolving clustering method based on TEDA (Typicality and Eccentricity Data Analytics) Framework, which uses multivariate time series in a spatio-temporal context. The model has an adaptation mechanism to deal with changes in the data distribution or concept drifts in data streams. The evolving clustering method is adjusted as the data points arrive and are processed, in an online manner. Its performance is evaluated in the application to problems of solar and wind energy forecasting as well as concept drift events. The model was developed in Python programming language using pyFTS library. To contribute to the replication of all the results, we provide all source codes in a public repository. The good results in the different experiments enable the e-MVFTS model to be used in forecasting problems with streaming data in renewable energy systems.

Suggested Citation

  • Severiano, Carlos A. & Silva, Petrônio Cândido de Lima e & Weiss Cohen, Miri & Guimarães, Frederico Gadelha, 2021. "Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems," Renewable Energy, Elsevier, vol. 171(C), pages 764-783.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:764-783
    DOI: 10.1016/j.renene.2021.02.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121002962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Dazhi & Gu, Chaojun & Dong, Zibo & Jirutitijaroen, Panida & Chen, Nan & Walsh, Wilfred M., 2013. "Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging," Renewable Energy, Elsevier, vol. 60(C), pages 235-245.
    2. Dambreville, Romain & Blanc, Philippe & Chanussot, Jocelyn & Boldo, Didier, 2014. "Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model," Renewable Energy, Elsevier, vol. 72(C), pages 291-300.
    3. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    4. Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
    5. Yu, Ruiguo & Liu, Zhiqiang & Li, Xuewei & Lu, Wenhuan & Ma, Degang & Yu, Mei & Wang, Jianrong & Li, Bin, 2019. "Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space," Applied Energy, Elsevier, vol. 238(C), pages 249-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Rubio-León & José Rubio-Cienfuegos & Cristian Vidal-Silva & Jesennia Cárdenas-Cobo & Vannessa Duarte, 2023. "Applying Fuzzy Time Series for Developing Forecasting Electricity Demand Models," Mathematics, MDPI, vol. 11(17), pages 1-18, August.
    2. Ren, Xiaoying & Zhang, Fei & Zhu, Honglu & Liu, Yongqian, 2022. "Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting," Applied Energy, Elsevier, vol. 323(C).
    3. Mukisa, Nicholas & Zamora, Ramon & Lie, Tek Tjing, 2021. "Diffusion forecast for grid-tied rooftop solar photovoltaic technology under store-on grid scheme model in Sub-Saharan Africa: Government role assessment," Renewable Energy, Elsevier, vol. 180(C), pages 516-535.
    4. Ana Lagos & Joaquín E. Caicedo & Gustavo Coria & Andrés Romero Quete & Maximiliano Martínez & Gastón Suvire & Jesús Riquelme, 2022. "State-of-the-Art Using Bibliometric Analysis of Wind-Speed and -Power Forecasting Methods Applied in Power Systems," Energies, MDPI, vol. 15(18), pages 1-40, September.
    5. Jinhua Zhang & Hui Li & Peng Cheng & Jie Yan, 2024. "Interpretable Wind Power Short-Term Power Prediction Model Using Deep Graph Attention Network," Energies, MDPI, vol. 17(2), pages 1-16, January.
    6. Zheng, Jianqin & Du, Jian & Wang, Bohong & Klemeš, Jiří Jaromír & Liao, Qi & Liang, Yongtu, 2023. "A hybrid framework for forecasting power generation of multiple renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    9. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    10. Nuria Mollá & Alejandro Rabasa & Jesús J. Rodríguez-Sala & Joaquín Sánchez-Soriano & Antonio Ferrándiz, 2021. "Incremental Decision Rules Algorithm: A Probabilistic and Dynamic Approach to Decisional Data Stream Problems," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    11. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    12. Evan Sauter & Maqsood Mughal & Ziming Zhang, 2023. "Evaluation of Machine Learning Methods on Large-Scale Spatiotemporal Data for Photovoltaic Power Prediction," Energies, MDPI, vol. 16(13), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    4. André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.
    5. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    6. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    7. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    8. Monjoly, Stéphanie & André, Maïna & Calif, Rudy & Soubdhan, Ted, 2017. "Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach," Energy, Elsevier, vol. 119(C), pages 288-298.
    9. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    10. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    11. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    12. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    13. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    14. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    15. Arumugham, Dinesh Rajan & Rajendran, Parvathy, 2021. "Modelling global solar irradiance for any location on earth through regression analysis using high-resolution data," Renewable Energy, Elsevier, vol. 180(C), pages 1114-1123.
    16. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    17. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    18. Sahar Koohfar & Wubeshet Woldemariam & Amit Kumar, 2023. "Performance Comparison of Deep Learning Approaches in Predicting EV Charging Demand," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    19. Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.
    20. Liu, Bai & Yang, Dazhi & Mayer, Martin János & Coimbra, Carlos F.M. & Kleissl, Jan & Kay, Merlinde & Wang, Wenting & Bright, Jamie M. & Xia, Xiang’ao & Lv, Xin & Srinivasan, Dipti & Wu, Yan & Beyer, H, 2023. "Predictability and forecast skill of solar irradiance over the contiguous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:764-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.