IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924003544.html
   My bibliography  Save this article

Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data

Author

Listed:
  • Perera, Maneesha
  • De Hoog, Julian
  • Bandara, Kasun
  • Senanayake, Damith
  • Halgamuge, Saman

Abstract

Regional solar power forecasting, which involves predicting the total power generation from all rooftop photovoltaic (PV) systems in a region holds significant importance for various stakeholders in the energy sector to ensure a stable electricity supply. However, the vast amount of solar power generation and weather time series from geographically dispersed locations that need to be considered in the forecasting process makes accurate regional forecasting challenging. Therefore, previous studies have limited the focus to either forecasting a single time series (i.e., aggregated time series) which is the addition of all solar generation time series in a region, disregarding the location-specific weather effects or forecasting solar generation time series of each PV site (i.e., individual time series) independently using location-specific weather data, resulting in a large number of forecasting models. In this work, we propose two new deep-learning-based regional forecasting methods that can effectively leverage both types of time series (aggregated and individual) with weather data in a region. We propose two hierarchical temporal convolutional neural network architectures (HTCNN A1 and A2) and two new strategies to adapt HTCNNs for regional solar power forecasting. In the first strategy, we explore generating a regional forecast using a single HTCNN. In the second, we divide the region into multiple sub-regions based on weather information and train separate HTCNNs for each sub-region; the forecasts of each sub-region are then added to generate a regional forecast. The proposed work is evaluated using a large dataset collected over a year from 101 locations across Western Australia to provide a day ahead forecast at an hourly time resolution which involves forecasting a horizon of 18 h. We compare our approaches with well-known alternative methods, including long short-term memory networks and convolution neural networks, and show that proposed HTCNN-based approaches require fewer individually trained networks. Furthermore, the sub-region-based HTCNN-based approach achieves a forecast skill score of 40.2% and reduces a statistically significant forecast error by 6.5% compared to the best-performing counterpart. Our results indicate that the proposed approaches are well-suited for forecasting applications covering large regions containing many individual solar PV systems in different locations.

Suggested Citation

  • Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003544
    DOI: 10.1016/j.apenergy.2024.122971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.