IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v318y2025ics036054422500489x.html
   My bibliography  Save this article

Combined ultra-short-term photovoltaic power prediction based on CEEMDAN decomposition and RIME optimized AM-TCN-BiLSTM

Author

Listed:
  • Zhou, Daixuan
  • Liu, Yujin
  • Wang, Xu
  • Wang, Fuxing
  • Jia, Yan

Abstract

Photovoltaic power prediction is crucial to the stable operation of the power system. In order to further improve the accuracy of photovoltaic power prediction, a Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Rime-ice (RIME) optimization algorithm and optimization Attention Mechanism (AM)-Time Convolutional Network (TCN)-Bidirectional Long Short-Term Memory Neural Network (BiLSTM) combined ultra-short-term photovoltaic power prediction model is proposed. First, the original power sequence is decomposed using CEEMDAN to obtain smoother data; then, for the inherent intermittency, variability, and stochasticity of PV power generation, a combined AM-TCN-BiLSTM prediction model is constructed to extract features and learn the PV power, and the RIME simulates the growth and crossover behaviors of the mistletoe-particle populations with powerful global optimization functions. The hyperparameters of the prediction model are optimized by the RIME algorithm, and the optimized hyperparameter prediction model is used to predict each subsequence obtained from the decomposition. Finally, the prediction results of each sub-sequence are integrated and reconstructed to obtain the final PV power prediction value. The simulation verification shows that the model can effectively improve the prediction accuracy compared with the comparison algorithm. In the experimental results, the MAE for the first and second predictive steps were recorded as 4.3116 and 5.0342, respectively. The RMSE values for these steps were 6.7357 and 8.5834, respectively. Additionally, the R2 showed a significant improvement, reaching 0.9879 for the first step and 0.9803 for the second step. These outcomes validate the effectiveness of the model proposed in this paper.

Suggested Citation

  • Zhou, Daixuan & Liu, Yujin & Wang, Xu & Wang, Fuxing & Jia, Yan, 2025. "Combined ultra-short-term photovoltaic power prediction based on CEEMDAN decomposition and RIME optimized AM-TCN-BiLSTM," Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:energy:v:318:y:2025:i:c:s036054422500489x
    DOI: 10.1016/j.energy.2025.134847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422500489X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chu & Hua, Lei & Ji, Chunlei & Shahzad Nazir, Muhammad & Peng, Tian, 2022. "An evolutionary robust solar radiation prediction model based on WT-CEEMDAN and IASO-optimized outlier robust extreme learning machine," Applied Energy, Elsevier, vol. 322(C).
    2. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    3. Sharma, Shubham & Malik, Prashant & Sinha, Sunanda, 2024. "The impact of soiling on temperature and sustainable solar PV power generation: A detailed analysis," Renewable Energy, Elsevier, vol. 237(PC).
    4. Zhang, Dongdong & Chen, Baian & Zhu, Hongyu & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model," Energy, Elsevier, vol. 285(C).
    5. Eseye, Abinet Tesfaye & Zhang, Jianhua & Zheng, Dehua, 2018. "Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information," Renewable Energy, Elsevier, vol. 118(C), pages 357-367.
    6. Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
    7. Wang, Xinyu & Ma, Wenping, 2024. "A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 295(C).
    8. Hodge, Bri-Mathias & Brancucci Martinez-Anido, Carlo & Wang, Qin & Chartan, Erol & Florita, Anthony & Kiviluoma, Juha, 2018. "The combined value of wind and solar power forecasting improvements and electricity storage," Applied Energy, Elsevier, vol. 214(C), pages 1-15.
    9. Li, Feng & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & Zhang, Guangde, 2024. "State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model," Energy, Elsevier, vol. 289(C).
    10. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    11. Yiling Fan & Zhuang Ma & Wanwei Tang & Jing Liang & Pengfei Xu, 2024. "Using Crested Porcupine Optimizer Algorithm and CNN-LSTM-Attention Model Combined with Deep Learning Methods to Enhance Short-Term Power Forecasting in PV Generation," Energies, MDPI, vol. 17(14), pages 1-17, July.
    12. Sareen, Karan & Panigrahi, Bijaya Ketan & Shikhola, Tushar & Sharma, Rajneesh, 2023. "An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction," Energy, Elsevier, vol. 278(C).
    13. Li, Jiale & Song, Zihao & Wang, Xuefei & Wang, Yanru & Jia, Yaya, 2022. "A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD," Energy, Elsevier, vol. 251(C).
    14. Guanghui Che & Daocheng Zhou & Rui Wang & Lei Zhou & Hongfu Zhang & Sheng Yu, 2024. "Wind Energy Assessment in Forested Regions Based on the Combination of WRF and LSTM-Attention Models," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    15. Mellit, A. & Pavan, A. Massi & Lughi, V., 2021. "Deep learning neural networks for short-term photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 172(C), pages 276-288.
    16. Jie Meng & Qing Yuan & Weiqi Zhang & Tianjiao Yan & Fanqiu Kong, 2024. "Short-Term Prediction of Rural Photovoltaic Power Generation Based on Improved Dung Beetle Optimization Algorithm," Sustainability, MDPI, vol. 16(13), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xiaoying & Liu, Haizhong, 2024. "Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S," Energy, Elsevier, vol. 305(C).
    2. Wu, Thomas & Hu, Ruifeng & Zhu, Hongyu & Jiang, Meihui & Lv, Kunye & Dong, Yunxuan & Zhang, Dongdong, 2024. "Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition," Energy, Elsevier, vol. 288(C).
    3. Gong, Jianqiang & Qu, Zhiguo & Zhu, Zhenle & Xu, Hongtao, 2025. "Parallel TimesNet-BiLSTM model for ultra-short-term photovoltaic power forecasting using STL decomposition and auto-tuning," Energy, Elsevier, vol. 320(C).
    4. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    5. Wang, Jianguo & Yuan, Weiru & Zhang, Shude & Cheng, Shun & Han, Lincheng, 2024. "Implementing ultra-short-term wind power forecasting without information leakage through cascade decomposition and attention mechanism," Energy, Elsevier, vol. 312(C).
    6. Cheng, Runkun & Yang, Di & Liu, Da & Zhang, Guowei, 2024. "A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting," Energy, Elsevier, vol. 308(C).
    7. Lin, Huapeng & Gao, Liyuan & Cui, Mingtao & Liu, Hengchao & Li, Chunyang & Yu, Miao, 2025. "Short-term distributed photovoltaic power prediction based on temporal self-attention mechanism and advanced signal decomposition techniques with feature fusion," Energy, Elsevier, vol. 315(C).
    8. Wang, Yuhan & Zhang, Chu & Fu, Yongyan & Suo, Leiming & Song, Shihao & Peng, Tian & Shahzad Nazir, Muhammad, 2023. "Hybrid solar radiation forecasting model with temporal convolutional network using data decomposition and improved artificial ecosystem-based optimization algorithm," Energy, Elsevier, vol. 280(C).
    9. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Wen, Yan & Pan, Su & Li, Xinxin & Li, Zibo & Wen, Wuzhenghong, 2024. "Improving multi-site photovoltaic forecasting with relevance amplification: DeepFEDformer-based approach," Energy, Elsevier, vol. 299(C).
    11. Liu, Wenhui & Bai, Yulong & Yue, Xiaoxin & Wang, Rui & Song, Qi, 2024. "A wind speed forcasting model based on rime optimization based VMD and multi-headed self-attention-LSTM," Energy, Elsevier, vol. 294(C).
    12. Hao, Jianhua & Liu, Fangai & Zhang, Weiwei, 2024. "Multi-scale RWKV with 2-dimensional temporal convolutional network for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 309(C).
    13. Daxini, Rajiv & Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2022. "Direct spectral distribution characterisation using the Average Photon Energy for improved photovoltaic performance modelling," Renewable Energy, Elsevier, vol. 201(P1), pages 1176-1188.
    14. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
    15. Udenze, Peter I. & Gong, Jiaqi & Soltani, Shohreh & Li, Dawen, 2025. "A deep neural network with two-step decomposition technique for predicting ultra-short-term solar power and electrical load," Applied Energy, Elsevier, vol. 382(C).
    16. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
    17. Shabbir, Noman & Kütt, Lauri & Raja, Hadi A. & Jawad, Muhammad & Allik, Alo & Husev, Oleksandr, 2022. "Techno-economic analysis and energy forecasting study of domestic and commercial photovoltaic system installations in Estonia," Energy, Elsevier, vol. 253(C).
    18. Dou, Weijing & Wang, Kai & Shan, Shuo & Chen, Mingyu & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2025. "A multi-modal deep clustering method for day-ahead solar irradiance forecasting using ground-based cloud imagery and time series data," Energy, Elsevier, vol. 321(C).
    19. Chen, Xiang & Ding, Kun & Zhang, Jingwei & Han, Wei & Liu, Yongjie & Yang, Zenan & Weng, Shuai, 2022. "Online prediction of ultra-short-term photovoltaic power using chaotic characteristic analysis, improved PSO and KELM," Energy, Elsevier, vol. 248(C).
    20. Sameer Al-Dahidi & Manoharan Madhiarasan & Loiy Al-Ghussain & Ahmad M. Abubaker & Adnan Darwish Ahmad & Mohammad Alrbai & Mohammadreza Aghaei & Hussein Alahmer & Ali Alahmer & Piero Baraldi & Enrico Z, 2024. "Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework," Energies, MDPI, vol. 17(16), pages 1-38, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:318:y:2025:i:c:s036054422500489x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.