IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924025960.html
   My bibliography  Save this article

A deep neural network with two-step decomposition technique for predicting ultra-short-term solar power and electrical load

Author

Listed:
  • Udenze, Peter I.
  • Gong, Jiaqi
  • Soltani, Shohreh
  • Li, Dawen

Abstract

Solar penetration and energy consumption are rapidly increasing and transforming the modern power system due to population growth, urbanization, industrialization, and the electrification of transportation and heating. These changes bring uncertainties such as load demand dynamics and solar intermittent, which are being addressed through forecasting techniques to ensure a safe and reliable power system. However, the forecasting approach requires quality data by applying signal processing techniques to ensure accurate prediction. In this study, a two-step decomposition technique involving the denoising of the first intrinsic mode function (IMF) obtained from complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), integrated with a hybrid convolutional neural network-bidirectional long short-term memory (CNN-Bi-LSTM) model to enhance prediction accuracy has been proposed. The original time series was first decomposed into thirteen (13) IMFs, or sub-series by CEEMDAN. Frequency analysis was carried out on the generated IMFs to understand their individual characteristics and the frequency component of each IMF generated at the first stage of decomposition. Subsequently, high frequency component in the first IMF was removed differently using CEEMDAN or variational mode decomposition (VMD). The first and second stage decomposed signals are then input into the CNN-Bi-LSTM architecture, where the CNN efficiently captures local features and short-term dependencies, while the Bi-LSTM component excels at modeling long-term dependencies and temporal dynamics. Here, modeling results showed that two-step decomposition strategies improve the accuracy of the forecast significantly by reducing the uncertainties associated with solar power generation and electrical load demand. Our study showed that CEEMDAN-CEEMDAN based model is the best fit for datasets with low sampling frequency (electrical load dataset) while the CEEMDAN-VMD based model works well for datasets with both low (electrical load) and high (solar power) sampling frequencies.

Suggested Citation

  • Udenze, Peter I. & Gong, Jiaqi & Soltani, Shohreh & Li, Dawen, 2025. "A deep neural network with two-step decomposition technique for predicting ultra-short-term solar power and electrical load," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025960
    DOI: 10.1016/j.apenergy.2024.125212
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    3. Gangqiang Li & Huaizhi Wang & Shengli Zhang & Jiantao Xin & Huichuan Liu, 2019. "Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach," Energies, MDPI, vol. 12(13), pages 1-17, July.
    4. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Mehrnaz Anvari & Elisavet Proedrou & Benjamin Schäfer & Christian Beck & Holger Kantz & Marc Timme, 2022. "Data-driven load profiles and the dynamics of residential electricity consumption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    7. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
    8. Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
    9. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    10. Oliver Doelle & Nico Klinkenberg & Arvid Amthor & Christoph Ament, 2023. "Probabilistic Intraday PV Power Forecast Using Ensembles of Deep Gaussian Mixture Density Networks," Energies, MDPI, vol. 16(2), pages 1-17, January.
    11. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    12. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    13. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    14. Fu, Yang & Ying, Feixiang & Huang, Lingling & Liu, Yang, 2023. "Multi-step-ahead significant wave height prediction using a hybrid model based on an innovative two-layer decomposition framework and LSTM," Renewable Energy, Elsevier, vol. 203(C), pages 455-472.
    15. Pang, Zhihong & Niu, Fuxin & O’Neill, Zheng, 2020. "Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons," Renewable Energy, Elsevier, vol. 156(C), pages 279-289.
    16. Aghaei, M. & Fairbrother, A. & Gok, A. & Ahmad, S. & Kazim, S. & Lobato, K. & Oreski, G. & Reinders, A. & Schmitz, J. & Theelen, M. & Yilmaz, P. & Kettle, J., 2022. "Review of degradation and failure phenomena in photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Nam, SeungBeom & Hur, Jin, 2019. "A hybrid spatio-temporal forecasting of solar generating resources for grid integration," Energy, Elsevier, vol. 177(C), pages 503-510.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
    2. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    3. Rai, Amit & Shrivastava, Ashish & Jana, Kartick C., 2023. "Differential attention net: Multi-directed differential attention based hybrid deep learning model for solar power forecasting," Energy, Elsevier, vol. 263(PC).
    4. Bo Gu & Xi Li & Fengliang Xu & Xiaopeng Yang & Fayi Wang & Pengzhan Wang, 2023. "Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    5. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    6. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Li, Peidu & Luo, Yong & Xia, Xin & Gao, Xiaoqing & Chang, Rui & Li, Zhenchao & Zheng, Junqing & Shi, Wen & Liao, Zhouyi, 2024. "Factors and quantitative impact on electrical yield in fishery complementary photovoltaic power plant under different cloud cover conditions," Energy, Elsevier, vol. 309(C).
    8. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    9. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    10. Fernando Venâncio Mucomole & Carlos Augusto Santos Silva & Lourenço Lázaro Magaia, 2025. "Parametric Forecast of Solar Energy over Time by Applying Machine Learning Techniques: Systematic Review," Energies, MDPI, vol. 18(6), pages 1-51, March.
    11. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    12. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    13. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    14. Zhang, Liwenbo & Wilson, Robin & Sumner, Mark & Wu, Yupeng, 2025. "Transfer learning in very-short-term solar forecasting: Bridging single site data to diverse geographical applications," Applied Energy, Elsevier, vol. 377(PC).
    15. Rizk M Rizk-Allah & Lobna M Abouelmagd & Ashraf Darwish & Vaclav Snasel & Aboul Ella Hassanien, 2024. "Explainable AI and optimized solar power generation forecasting model based on environmental conditions," PLOS ONE, Public Library of Science, vol. 19(10), pages 1-33, October.
    16. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    17. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    18. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    19. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
    20. Sun, Xiaoying & Liu, Haizhong, 2024. "Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.