A multi-modal deep clustering method for day-ahead solar irradiance forecasting using ground-based cloud imagery and time series data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135285
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
- Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Dou, Weijing & Wang, Kai & Shan, Shuo & Li, Chenxi & Wang, Yiye & Zhang, Kanjian & Wei, Haikun & Sreeram, Victor, 2024. "Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions," Applied Energy, Elsevier, vol. 365(C).
- Kellil, N. & Aissat, A. & Mellit, A., 2023. "Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions," Energy, Elsevier, vol. 263(PC).
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Spyros Theocharides & Marios Theristis & George Makrides & Marios Kynigos & Chrysovalantis Spanias & George E. Georghiou, 2021. "Comparative Analysis of Machine Learning Models for Day-Ahead Photovoltaic Power Production Forecasting," Energies, MDPI, vol. 14(4), pages 1-22, February.
- Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
- Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
- Wang, Xinyu & Ma, Wenping, 2024. "A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 295(C).
- Mondal, Rakesh & Roy, Surajit Kr & Giri, Chandan, 2024. "Solar power forecasting using domain knowledge," Energy, Elsevier, vol. 302(C).
- Bai, Mingliang & Yao, Peng & Dong, Haiyu & Fang, Zuliang & Jin, Weixin & Xusheng Yang, & Liu, Jinfu & Yu, Daren, 2024. "Spatial-temporal characteristics analysis of solar irradiance forecast errors in Europe and North America," Energy, Elsevier, vol. 297(C).
- Nourani, Vahid & Sharghi, Elnaz & Behfar, Nazanin & Zhang, Yongqiang, 2022. "Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data," Applied Energy, Elsevier, vol. 315(C).
- Huang, Xiaoqiao & Liu, Jun & Xu, Shaozhen & Li, Chengli & Li, Qiong & Tai, Yonghang, 2023. "A 3D ConvLSTM-CNN network based on multi-channel color extraction for ultra-short-term solar irradiance forecasting," Energy, Elsevier, vol. 272(C).
- Weyll, Arthur Lúcide Cotta & Kitagawa, Yasmin Kaore Lago & Araujo, Mirella Lima Saraiva & Ramos, Diogo Nunes da Silva & Lima, Francisco José Lopes de & Santos, Thalyta Soares dos & Jacondino, William , 2024. "Medium-term forecasting of global horizontal solar radiation in Brazil using machine learning-based methods," Energy, Elsevier, vol. 300(C).
- Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
- Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
- Deo, Ravinesh C. & Ahmed, A.A. Masrur & Casillas-Pérez, David & Pourmousavi, S. Ali & Segal, Gary & Yu, Yanshan & Salcedo-Sanz, Sancho, 2023. "Cloud cover bias correction in numerical weather models for solar energy monitoring and forecasting systems with kernel ridge regression," Renewable Energy, Elsevier, vol. 203(C), pages 113-130.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Yanru & Liu, Yu & Zhang, Yihang & Shu, Shaolong & Zheng, Junsheng, 2025. "DEST-GNN: A double-explored spatio-temporal graph neural network for multi-site intra-hour PV power forecasting," Applied Energy, Elsevier, vol. 378(PA).
- Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
- Mayer, Martin János & Yang, Dazhi, 2024. "Optimal place to apply post-processing in the deterministic photovoltaic power forecasting workflow," Applied Energy, Elsevier, vol. 371(C).
- Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
- Liu, Wencheng & Mao, Zhizhong, 2024. "Short-term photovoltaic power forecasting with feature extraction and attention mechanisms," Renewable Energy, Elsevier, vol. 226(C).
- Ping Tang & Ying Su & Weisheng Zhao & Qian Wang & Lianglin Zou & Jifeng Song, 2025. "A Hybrid Framework for Photovoltaic Power Forecasting Using Shifted Windows Transformer-Based Spatiotemporal Feature Extraction," Energies, MDPI, vol. 18(12), pages 1-20, June.
- Xie, Yang & Zheng, Jianyong & Mei, Fei & Taylor, Gareth & Gao, Ang, 2025. "An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning," Applied Energy, Elsevier, vol. 385(C).
- Udenze, Peter I. & Gong, Jiaqi & Soltani, Shohreh & Li, Dawen, 2025. "A deep neural network with two-step decomposition technique for predicting ultra-short-term solar power and electrical load," Applied Energy, Elsevier, vol. 382(C).
- Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
- Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
- Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Zhou, Daixuan & Liu, Yujin & Wang, Xu & Wang, Fuxing & Jia, Yan, 2025. "Combined ultra-short-term photovoltaic power prediction based on CEEMDAN decomposition and RIME optimized AM-TCN-BiLSTM," Energy, Elsevier, vol. 318(C).
- Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
- Fan, Siyuan & Geng, Hua & Zhang, Hengqi & Yang, Dazhi & Mayer, Martin János, 2025. "Incorporation of dynamic soiling loss into the physical model chain of photovoltaic (PV) systems," Energy, Elsevier, vol. 324(C).
- Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
- Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.
- Paweł Piotrowski & Mirosław Parol & Piotr Kapler & Bartosz Fetliński, 2022. "Advanced Forecasting Methods of 5-Minute Power Generation in a PV System for Microgrid Operation Control," Energies, MDPI, vol. 15(7), pages 1-23, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225009272. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.