IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008430.html
   My bibliography  Save this article

A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting

Author

Listed:
  • Wang, Xinyu
  • Ma, Wenping

Abstract

The precise forecasting of photovoltaic (PV) power is important for efficient grid management. To enhance the analysis and processing capability of PV characteristics, address the feature extraction challenges for long sequences, and improve forecasting accuracy, this study presents a robust hybrid deep learning model for PV power forecasting. First, a dynamic mean pre-processing algorithm is applied for data cleaning. Subsequently, an improved whale variational mode decomposition (IWVMD) algorithm is proposed for data decomposition in multichannel multi-scale modeling. Furthermore, a novel context-embedded causal convolutional Transformer (CCTrans) structure is used to predict each subsequence, and an optimal strategy is formulated for both input and output under the combined dynamic contextual information and single target variable forecasting (CDCTF) pattern. Finally, the forecasting results are reconstructed. Experiments are conducted to evaluate the performance of the model across different seasons, using publicly available datasets from the Desert Knowledge Australia Solar Center (DKASC). Ablation studies, validation with diverse datasets, and comparisons with other models confirm the effectiveness, accuracy, robustness, and generalizability of the model. In addition, recommendations for optimal forecasting ranges for different seasons are provided.

Suggested Citation

  • Wang, Xinyu & Ma, Wenping, 2024. "A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008430
    DOI: 10.1016/j.energy.2024.131071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
    2. Liu, Yunfei & Liu, Yan & Cai, Hanhu & Zhang, Junran, 2023. "An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network," Applied Energy, Elsevier, vol. 343(C).
    3. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    4. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    5. Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
    6. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
    7. Qu, Jiaqi & Qian, Zheng & Pei, Yan, 2021. "Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern," Energy, Elsevier, vol. 232(C).
    8. Jumaboev Sherozbek & Jaewoo Park & Mohammad Shaheer Akhtar & O-Bong Yang, 2023. "Transformers-Based Encoder Model for Forecasting Hourly Power Output of Transparent Photovoltaic Module Systems," Energies, MDPI, vol. 16(3), pages 1-11, January.
    9. Alberto Dolara & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output," Energies, MDPI, vol. 8(2), pages 1-16, February.
    10. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    2. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    3. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    4. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Liu, Xiangjie & Liu, Yuanyan & Kong, Xiaobing & Ma, Lele & Besheer, Ahmad H. & Lee, Kwang Y., 2023. "Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis," Energy, Elsevier, vol. 271(C).
    6. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    7. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).
    8. Fatma Mazen Ali Mazen & Yomna Shaker & Rania Ahmed Abul Seoud, 2023. "Forecasting of Solar Power Using GRU–Temporal Fusion Transformer Model and DILATE Loss Function," Energies, MDPI, vol. 16(24), pages 1-24, December.
    9. Limouni, Tariq & Yaagoubi, Reda & Bouziane, Khalid & Guissi, Khalid & Baali, El Houssain, 2023. "Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model," Renewable Energy, Elsevier, vol. 205(C), pages 1010-1024.
    10. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
    11. Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
    12. Zhao, Lingxiao & Li, Zhiyang & Pei, Yuguo & Qu, Leilei, 2024. "Disentangled Seasonal-Trend representation of improved CEEMD-GRU joint model with entropy-driven reconstruction to forecast significant wave height," Renewable Energy, Elsevier, vol. 226(C).
    13. Martins, Guilherme Santos & Giesbrecht, Mateus, 2023. "Hybrid approaches based on Singular Spectrum Analysis and k- Nearest Neighbors for clearness index forecasting," Renewable Energy, Elsevier, vol. 219(P1).
    14. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    15. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    16. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    17. Hui Wang & Su Yan & Danyang Ju & Nan Ma & Jun Fang & Song Wang & Haijun Li & Tianyu Zhang & Yipeng Xie & Jun Wang, 2023. "Short-Term Photovoltaic Power Forecasting Based on a Feature Rise-Dimensional Two-Layer Ensemble Learning Model," Sustainability, MDPI, vol. 15(21), pages 1-26, November.
    18. Brester, Christina & Kallio-Myers, Viivi & Lindfors, Anders V. & Kolehmainen, Mikko & Niska, Harri, 2023. "Evaluating neural network models in site-specific solar PV forecasting using numerical weather prediction data and weather observations," Renewable Energy, Elsevier, vol. 207(C), pages 266-274.
    19. Ren, Xiaoying & Zhang, Fei & Zhu, Honglu & Liu, Yongqian, 2022. "Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting," Applied Energy, Elsevier, vol. 323(C).
    20. Liu, Wencheng & Mao, Zhizhong, 2024. "Short-term photovoltaic power forecasting with feature extraction and attention mechanisms," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.