IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008430.html
   My bibliography  Save this article

A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting

Author

Listed:
  • Wang, Xinyu
  • Ma, Wenping

Abstract

The precise forecasting of photovoltaic (PV) power is important for efficient grid management. To enhance the analysis and processing capability of PV characteristics, address the feature extraction challenges for long sequences, and improve forecasting accuracy, this study presents a robust hybrid deep learning model for PV power forecasting. First, a dynamic mean pre-processing algorithm is applied for data cleaning. Subsequently, an improved whale variational mode decomposition (IWVMD) algorithm is proposed for data decomposition in multichannel multi-scale modeling. Furthermore, a novel context-embedded causal convolutional Transformer (CCTrans) structure is used to predict each subsequence, and an optimal strategy is formulated for both input and output under the combined dynamic contextual information and single target variable forecasting (CDCTF) pattern. Finally, the forecasting results are reconstructed. Experiments are conducted to evaluate the performance of the model across different seasons, using publicly available datasets from the Desert Knowledge Australia Solar Center (DKASC). Ablation studies, validation with diverse datasets, and comparisons with other models confirm the effectiveness, accuracy, robustness, and generalizability of the model. In addition, recommendations for optimal forecasting ranges for different seasons are provided.

Suggested Citation

  • Wang, Xinyu & Ma, Wenping, 2024. "A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008430
    DOI: 10.1016/j.energy.2024.131071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.