IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225014252.html
   My bibliography  Save this article

Incorporation of dynamic soiling loss into the physical model chain of photovoltaic (PV) systems

Author

Listed:
  • Fan, Siyuan
  • Geng, Hua
  • Zhang, Hengqi
  • Yang, Dazhi
  • Mayer, Martin János

Abstract

Understanding the long-term operational trends and dynamic characteristics of photovoltaic (PV) systems is crucial for maximizing system efficiency, enhancing grid stability, and reducing maintenance costs. Traditional methods typically calculate PV system losses as fixed values, which are suitable for stable environments or simple scenarios in the initial design phase. However, this static method fails to capture the impacts during long-term operations, particularly under changing environmental conditions. We propose a novel method for quantifying dynamic soiling loss to address this limitation. This method integrates the effects of dust accumulation into the existing physical model chain, significantly improving accuracy in long-term assessments. This study focuses on the dynamic impacts of dust accumulation over time, providing a comprehensive analysis of dust deposition, regular manual cleaning, and natural rainfall cleaning. We establish a dynamic soiling loss model to quantify the performance degradation of PV systems accurately. Public datasets from Australia, China, and Belgium are used to evaluate the model’s applicability and limitations in diverse environments and geographical areas and for different PV systems. A comparison of the proposed model’s results with operational data demonstrates its superior performance compared to the clear-sky and fixed-decay models. The proposed model has a lower mean bias error (MBE) for Australian data from 2017 to 2020, with an average of 0.0304 kW, and a lower normalized root mean square error (nRMSE) for data from the three countries, with a minimum value of 0.0916. We discuss the potential applications of the proposed method for PV power evaluation and data generation.

Suggested Citation

  • Fan, Siyuan & Geng, Hua & Zhang, Hengqi & Yang, Dazhi & Mayer, Martin János, 2025. "Incorporation of dynamic soiling loss into the physical model chain of photovoltaic (PV) systems," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225014252
    DOI: 10.1016/j.energy.2025.135783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Zhao, Ning & Yan, Suying & Zhang, Na & Zhao, Xiaoyan, 2022. "Impacts of seasonal dust accumulation on a point-focused Fresnel high-concentration photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 191(C), pages 732-746.
    4. Kazemian, Arash & Ma, Tao & Hongxing, Yang, 2024. "Evaluation of various collector configurations for a photovoltaic thermal system to achieve high performance, low cost, and lightweight," Applied Energy, Elsevier, vol. 357(C).
    5. Amaro e Silva, R. & Brito, M.C., 2019. "Spatio-temporal PV forecasting sensitivity to modules’ tilt and orientation," Applied Energy, Elsevier, vol. 255(C).
    6. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Chen, Zhisong & Sun, Ping, 2024. "Generic technology R&D strategies in dual competing photovoltaic supply chains: A social welfare maximization perspective," Applied Energy, Elsevier, vol. 353(PB).
    8. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    9. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Rediske, Graciele & Michels, Leandro & Siluk, Julio Cezar Mairesse & Rigo, Paula Donaduzzi & Rosa, Carmen Brum & Lima, Andrei Cunha, 2024. "A proposed set of indicators for evaluating the performance of the operation and maintenance of photovoltaic plants," Applied Energy, Elsevier, vol. 354(PA).
    11. Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Isaacs, Stewart & Kalashnikova, Olga & Garay, Michael J. & van Donkelaar, Aaron & Hammer, Melanie S. & Lee, Huikyo & Wood, Danielle, 2023. "Dust soiling effects on decentralized solar in West Africa," Applied Energy, Elsevier, vol. 340(C).
    13. Kaldellis, J.K. & Kapsali, M., 2011. "Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements," Energy, Elsevier, vol. 36(8), pages 5154-5161.
    14. Xie, Jun & Zhao, Bingzi & Zhang, Hang & Fu, Zheng & Yang, Tianhua & Li, Rundong, 2023. "Experimental study on the effect of dust particle deposition on photovoltaic performance of urban buildings," Renewable Energy, Elsevier, vol. 219(P1).
    15. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    16. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    17. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Chen, Shanlin & Li, Chengxi & Xie, Yuying & Li, Mengying, 2023. "Global and direct solar irradiance estimation using deep learning and selected spectral satellite images," Applied Energy, Elsevier, vol. 352(C).
    19. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    20. Hooshyar, Pooya & Moghadasi, Hesam & Moosavi, Seyed Ali & Moosavi, Ali & Borujerdi, Ali Nouri, 2025. "Recent progress of soiling impact on solar panels and its mitigation strategies: A review," Applied Energy, Elsevier, vol. 379(C).
    21. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Bria, Abir & Amraqui, Samir & Mezrhab, Ahmed, 2023. "A new proposed method to mitigate the soiling rate of a photovoltaic array using first-row height," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer, Martin János & Yang, Dazhi, 2024. "Optimal place to apply post-processing in the deterministic photovoltaic power forecasting workflow," Applied Energy, Elsevier, vol. 371(C).
    2. Mayer, Martin János & Yang, Dazhi, 2023. "Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Qi, Jiacheng & Dong, Qichang & Song, Ye & Zhao, Xiaoqing & Shi, Long, 2025. "Combining dust scaling behaviors of PV panels and water cleaning methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    4. Li, Baojie & Chen, Xin & Jain, Anubhav, 2024. "Power modeling of degraded PV systems: Case studies using a dynamically updated physical model (PV-Pro)," Renewable Energy, Elsevier, vol. 236(C).
    5. Liu, Wencheng & Mao, Zhizhong, 2024. "Short-term photovoltaic power forecasting with feature extraction and attention mechanisms," Renewable Energy, Elsevier, vol. 226(C).
    6. Wang, Wenting & Guo, Yufeng & Yang, Dazhi & Zhang, Zili & Kleissl, Jan & van der Meer, Dennis & Yang, Guoming & Hong, Tao & Liu, Bai & Huang, Nantian & Mayer, Martin János, 2024. "Economics of physics-based solar forecasting in power system day-ahead scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Yang, Dazhi & Gu, Yizhan & Mayer, Martin János & Gueymard, Christian A. & Wang, Wenting & Kleissl, Jan & Li, Mengying & Chu, Yinghao & Bright, Jamie M., 2024. "Regime-dependent 1-min irradiance separation model with climatology clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
    9. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Mahmoud Qadi & Montaser Shadid & Aiman Albatayneh & Hüseyin Çamur & Amos García-Cruz & Francisco Manzano-Agugliaro, 2022. "The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine," Energies, MDPI, vol. 15(12), pages 1-18, June.
    11. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    12. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
    14. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    15. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    16. Islam, Md. Imamul & Jadin, Mohd Shawal & Al Mansur, Ahmed, 2025. "Characterization of accumulated unknown and soil dust on the PV system: An experimental study on the impact and performance analysis," Renewable Energy, Elsevier, vol. 240(C).
    17. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    18. Chu, Yinghao & Yang, Dazhi & Yu, Hanxin & Zhao, Xin & Li, Mengying, 2024. "Can end-to-end data-driven models outperform traditional semi-physical models in separating 1-min irradiance?," Applied Energy, Elsevier, vol. 356(C).
    19. Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
    20. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225014252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.