IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224004985.html
   My bibliography  Save this article

A wind speed forcasting model based on rime optimization based VMD and multi-headed self-attention-LSTM

Author

Listed:
  • Liu, Wenhui
  • Bai, Yulong
  • Yue, Xiaoxin
  • Wang, Rui
  • Song, Qi

Abstract

Due to the nonlinearity, fluctuation, and intermittency of wind speed, its accurate prediction is essential for improving efficiency in wind power operation systems. In this regard, a hybrid model that combines the rime optimization algorithm (RIME), variational mode decomposition (VMD), multi-headed self-attention (MSA) mechanism and long short-term memory (LSTM) is proposed for wind speed prediction. First, the number of modes and VMD penalty parameter are optimized with RIME, the optimized parameters are brought into the VMD to decompose the raw wind speeds, and a Lagrange multiplier and quadratic penalty function are introduced to obtain the input series. Then, a LSTM short-term wind speed prediction model is constructed based on the MSA mechanism and solved for the hidden states and weights of each layer of attention in the model. Finally, a ReLU activation function is used to activate the hidden states of the LSTM model, and a weighted sum vector is used as the final sequence representation, which is inputted to the output layer for specific prediction to obtain the short-term wind speed prediction results. To verify the effectiveness of the proposed model, wind speed data from four wind farms in Ningxia, China, and two sets of wind speed data from an M2 tower in the USA are selected, and 19 models are built to compare the performance of the proposed model. The results show that the proposed model outperforms other models on all datasets in terms of all five performance metrics, with smaller errors and higher prediction accuracy.

Suggested Citation

  • Liu, Wenhui & Bai, Yulong & Yue, Xiaoxin & Wang, Rui & Song, Qi, 2024. "A wind speed forcasting model based on rime optimization based VMD and multi-headed self-attention-LSTM," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224004985
    DOI: 10.1016/j.energy.2024.130726
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224004985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.